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In order to create a machine capable of general intelligence, knowledge and concepts 

must be constructed from the computer’s point of view rather than ours. GOFAI made the 

mistake of assuming objects and relations can be explicitly programmed as a way to produce 

complex behaviour. However, this is not how skill nor intelligence is accomplished in nature. 

Instead, computer scientists and philosophers ought to be reviewing the findings from 

neuroscience, psychology, and biology for inspiration about how to uncover crucial aspects of 

cognition which have not been previously considered. Not only would this create new directions 

for the field of artificial intelligence, it would also lead to advancements in our current theories 

surrounding the ontogenesis of intelligence. 

 The development of human cognitive abilities begins even before birth. The interactions 

between DNA and the environment, which in this case encompasses both the mother’s body and 

the world she inhabits, provides a crucial foundation for learning to begin via adaptation. Though 

the term ‘learn’ often colloquially refers to explicit knowledge, the ability to implicitly learn 

about the world must also be considered, despite having little ability to perform actions to 

mitigate this process. However, evidence from developmental psychology suggests a child’s 

knowledge begins to accumulate and become strengthened even before leaving the womb. 

(Hepper 95; van Heteren 1169). After birth, adequate infantile development creates a set of 

conditions which enables learning to occur, where an individual’s first few years are spent 

strengthening perceptual abilities by interacting with people and simple objects. (Spelke 432) 

The child’s caregivers play an important role in this stage by acting as reinforcement, where the 



feedback they provide helps the child learn more efficiently than if it were absent. Eventually, 

cultural knowledge and facts about the world emerge to become the new foundation for 

understanding broader concepts. As the child matures, their existing knowledge facilitates the 

integration of new information and serves as the basis for the ability to reason and create abstract 

concepts. (Tomasello 650) Thus, childhood can be seen as a period characterized by the 

emergence of intellectual life, provided the necessary conditions for both adequate brain 

development and knowledge acquisition are present. 

Although a complete explanation of how the brain achieves and accomplishes certain 

behaviours is still in progress, experimental evidence has identified features of cognition which 

contribute to learning. While most agree that memory is a key aspect of knowledge, attention 

plays a large role as well, since it guides which aspects in the environment are represented in the 

mind. Furthermore, our attentional processes are also able to uncover features of our own minds 

and bodies by having access to sensory information and perceptual representations, which 

become connected with the contexts in which they arise. Over time, we bind these 

representations together to create a cohesive image about ourselves and how we fit and interact 

with the world. These ideas are stored in memory as a way to guide behaviour in novel situations 

requiring some level of reasoning to determine the best course of action. As our understanding of 

the world develops, behavioural and mental abilities operating on this knowledge expands as 

well, and eventually supports the complex thinking and reasoning associated with intelligence. 

 Deep learning systems serve as a promising method for creating intelligent machines 

since they are comprised of neural networks, which mimic the way associations are formed 

between individual neurons in the brain. These associations produce a specific pattern of activity 

which results in further activation throughout the network. If the resulting action is deemed 



appropriate, it can be reinforced to increase the likelihood of reactivation in the future. These 

associative networks have the potential to create simple representations based on the modality of 

a given input. For example, neural networks have been implemented to learn about features of 

images, speech and audio, as well as natural language. These four components may be all that is 

required to create intelligence, since humans seem to mostly rely on their sight, hearing, and 

language capabilities to discern features of the world. Although there are many other important 

faculties for learning, they might not be necessary for intelligence. Theoretically, these systems 

could be coordinated to relay information as a way to create associations between 

representations, giving rise to richer concepts over time and through experience. This notion 

might be explained better by way of an example. Say a computer vision system learns to 

recognize cars and trees, and eventually reaches a point where one may feel confident stating 

these visual representations are relatively stable within the system. However, a separate system 

would be dedicated to speech detection, and reinforcement learning could create representations 

for the sounds of the words ‘car’ and ‘tree’ with a high degree of accuracy across a broad range 

of phonemic variations. Furthermore, a different deep learning system can learn how the words 

‘car’ and ‘tree’ are used in sentences, associating each term with related words based on how 

they are used in contemporary language. Finally, another deep learning system would be able to 

recognize when sounds are similar to another, allowing for associations to form between sound 

bites. This system would be able to sort and categorize specific sounds, such as a car engine or 

the sound of rustling leaves. Once each sensory system had formed some level of consistent 

representation, the outputs of each could be interconnected to form a richer concept of what it 

means to be a ‘car’ or ‘tree.’ This process would be performed by a separate deep learning 

system, which for the sake of simplicity, can be called an attentional system.  



 The attentional system is analogous to a person’s sense of awareness, or the active 

processing which directs thought and manipulates knowledge. It would act as an interface 

between the world and the representations which emerged as a result of modality-specific deep 

learning, allowing for connections between each representation to be strengthened. Through 

repetition and error correction, the attentional process would begin to form higher level concepts 

by connecting and associating specific features of particular objects. Supplying this attentional 

process with different types of inputs, such as pictures or sounds, would provide cues for 

retrieving all the relevant information associated with that input, similar to how we test children 

in school. For example, providing an audio file of a car driving by would result in the attentional 

system to parse its stored associations to find the most likely cause for this noise, or display an 

assortment of related content. A human could then flag the relevant results as correct, allowing 

the attentional system to learn which behaviours or suggestions are appropriate. Through many 

iterations of reinforcement learning using large datasets, the attentional system would organize 

the knowledge it has access to in order to form robust representations of the world. It would also 

require the ability to reflect upon its own knowledge when it wasn’t receiving input, in order to 

identify any patterns or inconsistencies between pieces of information. This continual self-

reflection would serve as a method for knowledge consolidation and integration, further 

solidifying abstract concepts over time. As various inputs become increasingly complex, the 

computer develops its own representations by continuously working with examples from its past.  

 As concepts become increasingly intricate and robust, they can be further interconnected 

to handle larger or more abstracted contexts. To demonstrate this by way of an example, imagine 

the sound of a moving car versus the sound of a car driving through a puddle. Although there are 

commonalities associated with each sound bite, there is an extra feature within the latter sound, 



namely that of moving water, which could indicate a subset of environmental features to suggest 

a particular context. Eventually, as this context becomes learned by associating it with other 

items sharing similar characteristics, such as the presence of water, it can be abstracted to form a 

different concept, such as ‘raining’ or ‘is wet.’ Through continual association and abstraction, a 

system can formalize its own knowledge into different layers of representation and build a 

network of associated concepts. By creating neural network systems based on the strengthening 

of associations and dissociations, knowledge develops gradually over a series of interactions 

using a variety of data. Since these neural networks were missing in GOFAI systems, the 

associations it was able to make were limited to the contents decided upon by developers. 

Furthermore, this inadequate list of concepts would restrict a computer’s proficiency for 

understanding new ideas beyond those programmed into its software. Without a way to 

dynamically learn about new information by relating it to its own knowledge, it is unlikely that 

intelligent behaviour will emerge later on.  

 The reason why deep learning architectures are a preferred method to GOFAI is because 

it attempts to create intelligence from the bottom up, rather than a top down perspective. Hubert 

Dreyfus discusses this idea in What Computers Can’t Do, arguing against the conception of 

GOFAI as a model of general intelligence. He examines the biological, psychological, 

epistemological, ontological assumptions made by GOFAI to provide support for his argument. 

Biologically, he argues the brain not like a digital computer because the materials which allow 

neurons to communicate are comprised of a variety of electrochemical signals which sends 

graded information to and fro neurons. (74) This serves as evidence against the usage of concepts 

or formalized information as building-blocks for intelligence, suggesting a new approach is 

required. Neural networks and deep learning use a mathematical system which governs how 



associations are reinforced, and is fundamentally designed in the same manner as the neuronal 

structures which support cognitive functions. This is the most important aspect with respect to 

attempting to create a general artificial intelligence, since the assumptions of psychology 

partially rest on the correct implementation of cellular systems. However, neuroscience was not a 

prominent field of study when GOFAI machines were created, and our understanding of the 

brain to guide intelligence design was inaccessible at the time. Moreover, psychology and 

cognitive science have also made impressive contributions to theories of intelligence, providing 

new ways and additional ideas for conceptualizing an artificial mind. Although a complete 

understanding of cognition and the related neural substrates is yet to be determined, we may have 

sufficient resources to guide the implementation of a general intelligence system. 

 The epistemological and ontological assumptions made by GOFAI also differ from those 

made by neural networks. Epistemologically speaking, Dreyfus argues that information cannot 

be formalized and programmed into a computer to produce behaviour, because this is not how 

knowledge is generated in humans. (101) Although our own mental heuristics may be useful for 

guiding implementation, these operations are not formal, logical, nor scientific laws which can 

be distilled and copied to produce analogous mechanical functionality. (118) Rather, intelligence 

emerges by interacting with the world and its objects, which are subject to change based on 

context. The epistemological argument Dreyfus makes also relies on an ontological assumption 

suggesting the world is not sliced into separate conceptual pieces. Dreyfus argues that computers 

use discrete forms while the brain does not, creating a problem in translating how we assume the 

mind operates versus how it actually does, and its role for producing intelligence. (118, 137) 

Although heuristics and behavioural principles arise from the mind, they are not explicitly built 

into the mind itself as a way to govern behaviour. Instead, reinforcement learning serves as the 



foundation for the epistemological argument of intelligence, and by taking the opposite approach 

relative to GOFAI, better results will be achieved.  

In sum, computer science may benefit from designing artificial intelligence in a way 

which is analogous to how intelligence arises in biology, rather than generating explicit 

procedures. By analyzing the findings from fields studying the brain and human life, we may be 

able to model intelligence with better outcomes than previous attempts. Although there is still 

much to learn about how the brain operates, science and technology will continue to lead us 

closer to replicating this functionality in machines. By studying a variety of disciplines related to 

human development and cognition, eventually our machines will have minds of their own. 
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