Formal Systems of Neurons in Artificial Intelligence

Molly Graham Dec 13, 2023

CONTEXT

- Chapter 1 Social Robots for the Future
- Chapter 2 Analyzing Empathy
- Chapter 3 The Limitations of Developmental Robotics
 - 1. History of Artificial Intelligence
 - 2. Introducing iCub
 - 3. iCub's Failure to Empathize
 - aka Formal Systems of Neurons in AI
- Chapter 4 Modelling Life for Behaviour

Robert Rosen

(1934 – 1998)

- Theoretical biologist
 - Relational biology: functional organization
- Prof. of Biophysics at Dalhousie in NS (1975)
- Publications:
 - Anticipatory Systems (1985)
 - Life Itself (1991)
 - Essays on Life Itself (2001)

Δ Δ Δ Δ Δ Δ Δ Δ Δ

Natural Systems

- Physical/natural world
- Human constructs
 - cars, factories, cities, etc.

	• •
ЪГ	

Formal Systems

- Mathematical objects
- Other formal systems
 - Propositions (language)
 - Input-output relations

 $(\exists x)(Fx \rightarrow (\sim Gy \lor z)) \land (\exists x)(Gy \rightarrow \sim Hxy))$

Modelling Relations

- Connecting properties of NS to entities in FS
- Encode from NS to FS
 - Modelled in a FS
- Decode from FS to NS
 - Prediction in the NS

 $rac{d^2 heta}{dt^2}+rac{g}{\ell}\sin heta=0$

Computer Code as a Formal System

- Steps to be taken to accomplish a task (algorithm)
 - Pure syntax, no semantics
 - Software is independent of hardware
- Structures of inference or entailment
 - If x, then y
 - $p \rightarrow q$

McCulloch-Pitts neuron:

$$s(t) = +1 \quad \text{iff}\left[\sum_{k=1}^{m} e_k(t-1) + \sum_{k=1}^{n} i_k(t-1)\right] \ge \theta;$$

= 0 otherwise. (AS 187)

McCulloch-Pitts neuron:

- 0 = inactive neuron
- +1 = active neuron
 - e = excitatory input
 - i = inhibitory input
 - $\theta = \text{firing threshold}$
 - s(t) = state at time t
 - (t-1) = previous state

Computer Code as Artificial Intelligence

- Early computers inspire ideas about Al
 - Turing machine in 1936
 - von Neumann architecture in 1945
 - 'artificial intelligence' in 1956
- Programs created for tasks:
 - Symbolic (if-then)
 - Connectionist (neural networks)
- How to add semantics?
 - Developmental robotics for symbol grounding
 - iCub seems capable of learning...

Istituto Italiano di Tecnologia

Santiago Ramón y Cajal nobelprize.org/prizes/medicine/ 1906/cajal/article/

Simulated Behaviour

- Behavioural limitations will inevitably rise from the physical distinctions between NS and FS
 - Anticipatory systems: organisms like humans
 - Passive artifacts: computers and machines
- Semantics from biological structures
 - Can the functionality of semantics be separated?
 - No: cannot fully encapsulate semantic values from syntax alone

$$s(t)=+1 \quad \text{iff}\left[\sum_{k=1}^m \ e_k(t-1) \ + \sum_{k=1}^n \ i_k(t-1)\right] \geq \theta;$$

= 0 otherwise.

Simulated Behaviour – Continued

- Rosen appeals to Gödel's Incompleteness Theorem:
 - There exist true propositions which cannot be proven by axioms
 - No set of truths that we can derive all math from, there is a hole
 - Self-referential statements are a problem for syntax
- In computers, no semantics required but self-reference relies on semantic values
 - 'me', 'today', 'that', etc.

- Semantics cannot be fully described or accounted for by purely syntactical structures
 - Infinite regress: "what do you mean by...?"
 - Numerical values must be given
 - Which values? For a purpose...

Social [Computerized] Robots

- Communication involves more than just words
 - E.g. body language, tone, context, etc.
- May appear intelligent but it's a simulation of understanding
 - Associations between stimuli are created

• "Car"
$$\rightarrow$$
 \bigcirc

- But the word is meaningless to the computer/robot
 - Only "knows" or "learns" associations, not semantic information
 - New car smell
 - Feeling of the open road
 - Acceleration, gear shifting, winter driving
- Associations ≠ meaning
 - "Why are icy roads bad?"

CONCLUSION

= 0 otherwise.

- Formal systems model natural systems
 - Reductive, an idealized model s(t) = +1 iff $\left[\sum_{k=1}^{m} e_k(t-1) + \sum_{k=1}^{n} i_k(t-1)\right] \ge \theta$;
 - NS incompletely captured by FS
- Computerized robots like iCub only use syntax
 - No semantics, unlike biological organisms
 - Can simulate semantics with syntax to a degree
 - Socialization and empathy requires semantics
- A physical distinction between types of behaviour
 - Human, animal, plant (natural biological systems)
 - iCub (embodied formal system)
- Why does this matter? Anthropomorphization...

THANK YOU!

