Category: Biology

Rescuing Qualia

In Quining Qualia, Dennett states “conscious experience has no properties that are special in any of the ways qualia have been supposed to be special” where qualia are considered “special properties, in some hard-to-define way.” His appeals to intuition aim to defend these ideas, however, the examples he provides may fail to convince the reader as objections can be drawn based on an understanding of nervous system functioning and through examining human behaviour. Here, I’m interested in providing an explanation for qualia which does not rely on some intrinsic property of the mind, but a product of culture which influences, and is influenced by, individual humans and their subjective experiences.

To be facetious for a moment, if qualia did not exist, how could one explain why it is that humans feel compelled to spend energy, time, and money on creating, sharing, and experiencing art? Dennett might appeal to the nature of subjective experiences or perhaps to our motivation for seeking pleasure, however there is much more to subjective experiences than one’s feelings or mental representations evoked by some stimulus. Knowledge surrounding a particular stimulus may shape the way it feels or appears from a first-person perspective; for example, mistaking a benign object for a threat of some kind. A coat and hat hanging on a wall hook inside a dark room may be mistaken for a person, perhaps causing one to feel threatened or startled by the apparent intruder, only to discover the truth after turning on the lights. The subjective experience prompted by the sight of the coat and hat is different than if the illusion had indeed been an unexpected guest, primarily due to the relief one is likely to feel at discovering the reality of the situation. In the case of experiencing art, subjective experiences may change over time or with repeated exposure, but our minds are also influenced by the minds of others. The ability to communicate our feelings to others introduces additional perspectives surrounding a particular stimuli, potentially altering one’s own perception and subsequent experiences. These shared ideas or experiences are then represented through cultural artifacts, practices, or beliefs, and aim to depict associations between sensations and perceptions. In this way, qualia are a features of the natural world insofar as they are a result of evolution and human intelligence, becoming “real” as they shape the ways individuals experience and interact with various stimuli.

Not all subjective experiences become qualia though, as some perceptions are more difficult to articulate than others. How to articulate one’s visual experiences of red? It may remind you of something, but it doesn’t necessarily feel like much to merely look at a red object. I can infer that you probably see the colour red like I do when I consider your behaviour around colourful objects. If someone were to indicate their inability to distinguish colours in the same way that I do, I might perform a quick test to verify the experiential discrepancy. Regardless of individual perception however, there is still “something it is like” to see the colour red as most of us do and are able to create representations appealing to this visual quality. Articulating the nature of ‘red’ on its own is rather tough because its qualities aren’t a composite of other visual qualities per say, at least not in the way that ‘orange’ is. From this perspective, qualia emerge through the act of communicating our experiences to others and through identifying the various phenomenological aspects they contain. Qualia feel real to humans because we use them to engage with artistic practices, almost like Dawkins’ memes but saturated in visceral associations to various sensations and perceptions.

If qualia aren’t real, then why does a collection of piano chords remind Debussy and other listeners of clouds? Language enables us to describe our subjective experiences using similes, where one environmental feature reminds us of something else. These associations are likely to follow certain regularities given the laws and constraints of our universe and our physiology, resulting in a similarities between subjective and shared experiences. I doubt any listener will associate Debussy’s pieces with the eruption of Krakatoa, but it seems reasonable to assume some individuals may think of water rather than the sky when listening to Nuages. Thus, it could be suggested that stimuli may evoke a potential set of qualia that humans may refer to when considering their own subjective experiences. Exactly which qualia are included and excluded is roughly determined by how a stimulus affects individuals as a result of their physiological functioning.

Qualia are products of human culture, not biology. The evolution of primates along with their tendency to socialize and enjoy participating in shared activities gave rise to a shared experiences and various ways to depict or describe them. Human cultures create classifications, distinctions, and ontological categories as way to explain natural phenomena and to share knowledge. This collective idea on how our subjective experiences appear to others facilitates bonding as humans learn they are able to relate to the private experiences of others.

Works Cited

Dennett, Daniel C. “Quining qualia.” Consciousness in modern science. Oxford University Press, 1988.

Postmodern Famine

I recognize this post will seem a bit tin-foily but I think it’s time we start acknowledging the consequences of a disrupted global supply chain. Perhaps things won’t get as bad as I am predicting but I think the underlying message will be relevant at some point. Ultimately, the standard of living we grew up taking for granted is about to change to some degree.

The majority of foods we consume and enjoy are dependent on global industries which are currently altering production and transportation protocols as demand and supply continue to change. Regardless of whether shortages arise due to nations restricting exports or locusts ravaging farmlands, it seems likely that by midsummer we will lose access to a variety of foods. Today, we see restaurants only offering take-away or delivery options in an attempt to find a balance between remaining open and upholding distancing measures. Grocery stores are either running out of products or limiting which items they order, as I hear shelves tend to be more empty these days. Before long, the service workers who prepare this food are likely to disappear too, as they themselves become sick or simply refuse to continue to put themselves at risk. Facilities where ready-made meals are prepared may also see a shortage of workers, limiting options for those who do not prepare their own food. We will be required to make everything ourselves, and before you call my a whiny millenial, remember that this is just the beginning. Processed foods will be next, including frozen meals, baked goods, canned soups and sauces, cookies, chips, crackers; anything that is not considered an ingredient. Eventually, however, personnel involved with all levels of the supply chain will be impacted in some way, leading to shortages of produce, dairy, and meat. I have been working on this post for a few weeks, and recently the talk of meat shortages has only increased. While we may not see wide-scale shortages until the end of the year, the decline in numbers of human workers is approaching and it will impact access to most foods.

While you may be able to survive a year without a decent burrito, these effects are not short-term as the entire world is in the midst of readjusting. You may have heard the stories of vegetables rotting in the fields or milk being dumped, but what you may not realize is these were ingredients for future foods too. The downstream effects will be a reduction in selection, and by selection I’m not talking about brands but categorical options. The only milk you may have access to is homogenized milk and cream; no skim, no 2%, and certainly no 1%. If you’re lactose intolerant, you may only be able to buy soy beverage given the recent nature of the American agricultural economy. Unilever or Kraft may have to cut production of certain items given these shortages, and suddenly we are in the midst of a type of food shortage in a time where emotional eating is at its height.

When you no longer have access to the things you love, the things that comfort you, what will you do? There are other forms of escapism and sugar comes in many forms, but we take variety for granted. We have become dependent on satisfying our appetites to some degree, regardless of whether it’s through alcohol, sugar, fat, or caffeine. We cope by consuming these substances and take pleasure in their effects, but there may also be other associations with these foods which contributes to societal well-being. Families and mealtimes go hand-in-hand all over the world, and it is difficult to determine how changes to supply chains will impact social relations.

Another option for coping is through various forms of media, as it entertains us and distracts our minds from the horror of reality. The problem arises from the tight coupling of food and visual media, irrespective of advertising. Since food is a cultural activity enabled by peak globalism, and a source of human happiness, we may suffer if this shared experience has been diminished to some degree. This may become especially apparent if images of our favourite foods are continuously popping up in our attempts to distract ourselves. Currently, social media posts include pictures of homemade creations or recommended recipes, and scrolling through staged photos may enrage us if we can’t have what we are seeing. It will remind us of a time when we had it all but didn’t even know it.

Until then, we will begin to value normalcy as type of currency, where our motivations aim to meet a luxurious set of basic needs. First-world lifestyles are built on options and variety in the things we consume, from Netflix shows to vegetarian alternatives. Notions of scarcity in a postmodern society seem ironic because it implies a reduction in standard of living, not necessarily a threat to survival. As we take our current way of life for granted, the more we put ourselves at cognitive and emotional risk. We have to acknowledge our personal dependency on this consumeristic environment we grew up assuming was normal. This has produced a level of entitlement which is about to be threatened or at least thrust into the spotlight, and perhaps leading to a reduction in emotional well-being. Some are frustrated by the actions of those who believe their freedoms are being restricted, and those protesting lock down orders inspire others to demand things “return to normal.” I don’t see it happening. Will this lead to societal unrest, especially as unemployment numbers grow? Of course it’s difficult to determine how society will adjust to this new normal, but I don’t like the way things are going today. Throw a change of available coping mechanisms into the mix and ask yourself, how are we going to handle this adjustment to a new normal? Maybe we won’t feel it until this time next year, but I believe our collective emotional well-being is about to deteriorate, for a number of reasons.

Why Science Needs Philosophy

My peers within the department often joke about life after university, considering the whole world seems to scoff at those interested in pursuing arts and humanities (A&H) degrees. This opinion piece by Laplace, however, is an important reminder of the value of our discipline, regardless of how much money we end up making in the future. As institutional funding is reallocated to support students pursuing more profitable degrees like computer science and engineering, A&H departments are likely to suffer, unable to hire new faculty and limiting course selection for example. Unless philosophers can market their skills to assist with projects from a variety of sectors, I don’t see how society will continue to support our endeavours, perspectives and concerns. Although notions of “anti-elitism” seem to continue to grow in the United States, perhaps Canada will challenge my pessimistic attitudes on this subject and find innovative ways to support their A&H graduates, but we will see. This suggests philosophers may need to do their own advocacy demonstrating the financial value of creativity and scepticism, especially within business, science, and technology. Consider this entry as my early attempts at convincing you, dear reader, that philosophy is much more than writing about central figures such as Kant, Aristotle, or Frege.

Although Laplane discusses many important points throughout, the end of the article is quite interesting as it suggests ways to foster the relationship between science and philosophy. Now, I’m not quite sure who said this to me, but they presented the idea that philosophy and science are able to discuss the same topic in different ways. While science may prefer ‘what’ questions, philosophy tends to ask ‘why’ and perhaps even ‘how’ concepts, principles, or processes emerge. Though this generalization may oversimplify the relationship between the two, I merely wanted to point out their approximate differences. Laplane herself states “…we see philosophy and science as located on a continuum.” (3950) which suggests both an overlap and a distinction in the questions each discipline asks. It is important to remember the common ground, in addition to the diversity in perspectives, between science and philosophy as we consider new ways to unite these two fields of inquiry.

While I agree with all six recommendations on page 3951, the fourth and fifth stood out to me as the most important especially when it comes to developing this program in the future. The marriage of science and philosophy can only be as good as its thinkers, where education serves a central role for this relationship to be harmonious and fruitful. From primary school to post secondary, it will become increasingly important to teach both arts and sciences of various types to foster the integration of the two. I say ‘arts’ rather than ‘philosophy’ because developing a love for the arts may inspire individuals in ways philosophy is unable. Artistic expression, regardless of medium, allows one to improve their sense of self, and when combined with educational goals, is likely to facilitate personal and professional growth more effectively than either alone. Whether it is sculpting, poetry, or dance, artistic expression provides mechanisms for new approaches within the sciences as one remains in touch with their creative side. Although it might be difficult to understand how theatre may inspire work in civil engineering, the human brain is quite powerful in its abilities to “fill in the blanks” and synthesize concepts, if the opportunity arises. Most exciting of all is how access to information via the internet and online relationships can further assist individuals in their efforts.

Returning to philosophy though, Laplane makes an important point about why philosophical inquiry is so appropriate for science. On page 3950 after the excerpt mentioned above, she states:

“Philosophy and science share the tools of logic, conceptual analysis, and rigorous argumentation. Yet philosophers can operate these tools with degrees of thoroughness, freedom, and theoretical abstraction that practicing researchers often cannot afford in their daily activities.”

It is exactly this freedom which inspired me to move away from studying psychology to studying philosophy of mind. Of course, too much of a good thing can lead one astray, which is why empirical evidence and the methodologies which produce it must never be overlooked by philosophers. The ability to defer to experts is a powerful bidirectional tool which carries so much potential for the future, and maybe one day those interested in A&H subjects will find their niche within capitalistic economies.

Works Cited

Laplane, Lucie, et al. “Opinion: Why science needs philosophy.” Proceedings of the National Academy of Sciences 116.10 (2019): 3948-3952.

Update: Phil of Bio

The University of Guelph has a Philosophy of Biology course and it was everything I was hoping it would be. Jointly taught by Dr. Stefan Linquist and Dr. Ryan Gregory, our focus on arguments surrounding epigenetics led many to agree there isn’t really a lot of new information. The book Extended heredity: a new understanding of inheritance and evolution turned out to be hilariously contradictory, as many of the concepts it presented can be easily explained by existing biological theories. I had an opportunity to receive feedback on ideas I have about Chalmers’ “bridging principles” and how biological processes produce subjective feelings. As I suspected, an incredible amount of work needs to be done to get these ideas together, but I have a direction now. The project is being placed on the back burner though and so is my attempt to work on consciousness at school. I’m not too worried, I’ll get to it later.

For now, I’m going to work on an argument for an upcoming need to reconsider our conception of robots and our relationships with them, particularly as they begin to resemble subjects rather than objects. There is a growing demand for robotic solutions within the realm of healthcare, suggesting certain functionality must be incorporated to achieve particular outcomes. Information processing related to social cues and contexts such as emotional expression will be important to uphold patient dignity and foster well-being. Investigating Kismet‘s architecture suggests cognition and emotion operate in tandem to orient agents toward goals and methods for obtaining them. The result of this functional setup, however, is it requires humans to treat Kismet like a biological organism, implying a weak sense of subjectivity. I’m also interested in considering objections to the subjectivity argument and reasons why our relationships with robots will remain relatively unchanged.

My original post on the philosophy of biology cited the entry from the Stanford Encyclopedia of Philosophy which is authored Paul Griffiths. I learned earlier this term that Dr. Linquist studied under Dr. Griffiths, a fact that should not be surprising but is still quite exciting.

I’m looking forward to working on this project and the outcome of the feedback and learning, but I am going to get knocked down many levels over the next six months or so. I mean, that’s why I am here.

Works Cited

Bonduriansky, Russell, and Troy Day. Extended heredity: a new understanding of inheritance and evolution. Princeton University Press, 2018.

Programming Emotions

Last summer, I was introduced to the world of hobby robotics and began building an obstacle-avoidance bot as a way to learn the basics. Once classes started last September, all projects were set aside until I graduated, allowing me to focus on school. Now that I have free time, I’ve been thinking about what kind of robot to build next. It will probably still have wheels and an ultrasonic sensor, but I want it to behave based on its internal environment as well as its external environment. Not only will it detect objects in its path, but it will also move about based on its mood or current emotional state. For example, if it were to be afraid of loud noises, it would go to “hide” against a nearby object. This specific functionality would require the robot have a microphone to detect sounds, and is something I have been thinking of adding. Otherwise, the only input the robot has is object-detection, and producing or calculating emotions based on the frequency of things in its path is kind of boring. I have also been interested in operationalizing, codifying, and programming emotions for quite a while now, and this project would be a great place to start.

One helpful theory I came across is the Three-Factor Theory (3FT) developed by Mehrabian and Russell in 1974 (Russell and Mehrabian 274). It describes emotions as ranging through a three-dimensional space consisting of values for pleasure, arousal, and dominance. For example, a state of anger is associated with -.68 for pleasure, +.22 for arousal, and +.10 for dominance (Russell and Mehrabian 277). After mulling on these averages for a second, I feel these are fairly reflective of general human nature, but let’s not forget these values are dependent on personality and contextual factors too. However, the notion of ‘dominance’ doesn’t feel quite right, and I wonder if a better paradigm could take its place. Personally, the idea of being dominant or submissive is quite similar to the approach/avoidance dichotomy used in areas of biology and psychology. ‘Dominance’ is inherently tied to social situations, and a broader theory of emotion must account for non-social circumstances as well. The compelling argument from the approach/avoidance model centers around hedonism, motivation, and goal acquisition; if a stimulus is pleasurable or beneficial, individuals are motivated to seek it out, while undesirable or dangerous stimuli are avoided in order to protect oneself (Elliot 171). Furthermore, this also works well with the Appraisal Theory of emotion, as it argues that affective states indicate an individual’s needs or goals (Scherer 638). Therefore, I will be using a value range based on approach/avoidance rather than dominance. While human emotions tend to involve much more than a simple judgement about a situation, the Appraisal Theory should suffice for a basic robot. One last modification I would like to make in my version of the 3FT is changing ‘pleasure’ to ‘valence’. This is merely to reflect the style of language used in current psychological literature, where positive values are associated with pleasure and negative values are associated with displeasure. I also like this because robots don’t feel pleasure (yet?) but they are capable of responding based on “good” and “bad” types of stimuli. ‘Arousal’ is perfectly fine as it is, as it reflects how energetic or excited the individual is. For example, being startled results in high arousal due to the relationship between the amygdala, hypothalamus, and other local and distal regions in the body, which typically prepare the individual to run or fight (Pinel 453-454).

To summarize, the three factors I will be using are valence, arousal, and approach/avoidance. As much as I would love to find a term to replace ‘approach/avoidance’, for the sake of a nice acronym, I have yet to find one which encapsulates the true nature of the phenomenon. Anyway, this modified 3FT seems to be a good start for developing emotional states in a simple robot, especially if it only receives a narrow range of sensory input and does not perform any other sophisticated behaviours. While this robot will possess internal states, it won’t be able to reflect upon them nor have any degree of control over them. Heck, I won’t even be using any type of AI algorithms in this version. So if anyone is spooked by a robot who feels, just know that it won’t be able to take over the world.

Works Cited

Elliot, Andrew J. “Approach and avoidance motivation and achievement goals.” Educational psychologist 34.3 (1999): 169-189.

Pinel, John PJ. Biopsychology. Boston, MA: Pearson, 2011.

Russell, James A., and Albert Mehrabian. “Evidence for a three-factor theory of emotions.” Journal of research in Personality 11.3 (1977): 273-294.

Scherer, Klaus R. “Appraisal theory.” Handbook of cognition and emotion (1999): 637-663.

An Appeal to Philosophy of Biology

Subdivisions within the of philosophy of science have many handy conceptual tools to offer those studying philosophy of mind. For example, the philosophy of biology is able to provide insight on how the theory of evolution contributed to the development of the brain and its functions, why consciousness feels the way it does, and how humans became so intelligent and rational (Griffiths 2017). Questions within biology and other sciences are slowly answered as scientists gather evidence and connect it with other knowledge. A philosopher may ask similar questions (Griffiths 2017, section 8) but these are likely to differ in contexts such as scope or level of abstraction. Appealing to evidence provides good epistemic reason to form a belief (typically and/or ideally) and may provide compelling answers for anyone who feels inclined to follow this style of thinking¹.

This is indeed a bold claim, but I am eager to demonstrate its effectiveness. Consciousness can be explained in slightly metaphysical, somewhat psychological, and mostly biological² terms, and it’s time we check out the evidence. Once a rough sketch of how the mind supervenes on the brain has been sufficiently outlined, we can create tests to answer further or lingering questions. If we work at collecting all sorts of information about the brain, body, and environment, organizing questions and findings in strategic ways, we can create an empirical account for the mind.

Topics to be discussed for an empirical account of consciousness include:

  • Anthropology and human history
  • Biology and its sub-fields
  • Cognitive psychology
  • Culture and social life
  • Developmental psychology; environmental influences, neural plasticity
  • Evolution; development of the nervous system
  • Linguistics; role of language on the brain
  • Neuroscience
  • Philosophy of mind; historical to current
  • Technology; mechanical, information

This is only the beginning however, so I am sure there will be more. I did not include metaphysics and epistemology in that list because they’re kind of implied. If you think there is something I’m missing, either from the list or from something related to the post, feel free to email me.

For those of you who like foreshadowing or hints, check out Ontic Structural Realism, related to philosophy of science.

Notes:

  1. I say this with little or no fervor; there are people who agree and those who do not. Epistemology is beautifully dense and compelling, and I understand there are many sides and critiques.
  2. In a reductionist sense, where biological terms and concepts can be explained via chemistry, which can be explained via physics, etc. Moreover, this list of sources for evidence is not comprehensive.

Works Cited

Griffiths, Paul, “Philosophy of Biology”, The Stanford Encyclopedia of Philosophy (Spring 2017 Edition), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/spr2017/entries/biology-philosophy/>.