Category: Philosophy

Belief is a Relationship

Like many philosophy students, the list of books I would like to read is quite long and only continues to grow. One of them is Iain McGilchrist’s The Master and His Emissary which discusses the difference between brain hemispheres and the specializations of each. He’s also written papers on the subject, one of which being ‘Cerebral Lateralization and Religion: a phenomenological approach’ which I have read. Overall, it’s very interesting but there is a particular section which struck me as rather significant for epistemology and mental health.

On page 328, under the heading ‘Knowledge, belief, and truth’, McGilchrist discusses the different kinds of knowledge handled by each hemisphere. While the left hemisphere specializes in collecting bits and pieces of information from a “general, impersonal, … and disengaged stance,” the right hemisphere specializes in uncertain, personal, and experiential knowledge which “resists generalization.”1 In this case, “the whole is not best understood by summing the parts.” He mentions this distinction is similar to the difference between the French terms savior and connaître, as although both of these terms directly translate to ‘knowledge’, the kind of knowledge they refer to is unique. One refers to an experiential knowledge while the other refers to propositional knowledge. The German language also notes this distinction with the words wissen and kennen.

McGilchrist goes on to explain how ‘belief’ is also subject to this differentiation. Though many use this word to refer to cognition and propositional knowledge, the etymological root of the term uncovers a kind of experiential knowledge. Particularly, ‘lief’ in Middle English describes a person who is “beloved, esteemed, dear”2 or, as McGilchrist states, as “someone in whom one believed.” Similarly, in German, the word ‘lieben’ means “to love.” Furthermore, the French word for ‘belief’ is croire, as derived from the Latin term credere, meaning to “entrust to the care of.” McGilchrist states that “belief is about a relationship” where the “believer needs to be disposed to love, but the believed-in needs to inspire another’s belief.” This cannot be determined in advance but instead “emerges through commitment and experience.”

In contemporary uses, ‘belief’ often indicates an uncertainty about truth, however, this reconceptualization is a relatively recent one. McGilchrist states that “belief does imply truth” and appeals to the German term treu which means ‘faithful’ and is also related to ‘trust’. The relationship he points out here is one characterized by trusting another, where one believes in another, and as such, trusts in them. Truth and belief are relational, deriving value from the context in which they are used or appealed to, in addition to being embodied and actively involving commitment. Today, however, we often think of ‘truth’ and ‘belief’ as detached and disembodied, where ‘truth’ is independent of our own selves, “immutable and certain.” McGilchrist characterizes this shift as an understanding rooted in right-hemispheric thinking to a left-hemispheric one, and he warns that “belief and truth cannot always be achieved by simply sitting back and waiting passively for information to accumulate.”3 Instead, “some truths become understandable only when we have made a move to meet them.” [emphasis added]

So to summarize, both ‘knowledge’ and ‘belief’ come in two different flavours: one which is propositional and cognitive, and one which is experiential and relational. ‘Belief’ is not a weaker version of knowledge but an outcome of an activity grounded in love and acceptance. It is relational, as these feelings or dispositions arise from the interaction between the person who believes and the thing they believe in, uncovering or identifying truths from this committed relationship. This thing to be believed in may be another person, however, it also applies to the self. By accepting and appreciating your own thoughts and feelings as worthy of attention and consideration, we build up an understanding of ourselves as individuals, allowing us to realize our potential. If I believe I will graduate, I trust that I will take the steps necessary to complete my project and sufficiently defend it. I trust myself because I have accepted my strengths and weaknesses, allowing me to push forward when challenges arise.

In spiritual or religious contexts, this relationship is oriented outward to a domain or entity residing beyond the material world, however, it can also refer to a relationship to oneself. In Gnostic traditions, generally speaking, individuals come to know a divine or non-material domain only when one turns their attention inward to reflect on experience and understanding. In this way, a weaker form of ‘belief’, perhaps glibly characterized by a blind faith in some divine force or entity, can be strengthened by relying on one’s own knowledge and understanding to form a bridge into the world of the immaterial and unknown. By going through oneself, individuals can access a world beyond the physically experienced one to uncover truths which would otherwise be occluded by the physical world and its various authorities. Occult knowledge may be purposefully hidden, however, it seems this may simply reflect the reality of where this knowledge naturally resides. To reach this domain, the path one must take is through a healthy relationship with the self, where the beginning of this path is in acceptance and the analysis of one’s experiences and understanding.

The reason I wanted to discuss this segment from McGilchrist’s paper is because it highlights a fallacy in our modern, scientific world-view, one which suggests that truth is to be found from without. Certainly there are instances where this is the case, as the rate of gravity has nothing to do with my experiences of it, however, subjective experiences of gravity do play a role in how it has been scientifically conceptualized. Our perceptions of the physical world provide us with a window into understanding the natural processes which occur regardless of our actions; a falling tree will still make a noise even if there is no one around to hear it. That said, the information uncovered from this invariant viewpoint is by no means the end-all-be-all, and by solely focusing on a scientific point of view, we diminish the ways in which these natural processes impact and influence our own understanding. Instead of remaining open to experiencing and contemplating strange anomalies and inexplicable phenomena, a preoccupation with objectivity and scientific theory closes one off to other experiences and knowledge.

Therefore, to believe in yourself is to remain open to experiences of all kinds. Beliefs are capable of carrying just as much truth as knowledge, and are thus not necessarily a weaker or less certain form of knowledge. If doubt does manage to creep in, use it as a tool to for reflection to better understand your own experiences, rather than appealing to this newer sense of ‘belief’ to discount your thoughts and feelings.

Ely Cathedral in Cambridgeshire, UK
Wikimedia Commons Picture of the Day on May 8, 2024


Works Cited

1 Iain McGilchrist, ‘Cerebral Lateralization and Religion: A Phenomenological Approach’, Religion, Brain & Behavior 9, no. 4 (2 October 2019): 328, https://doi.org/10.1080/2153599X.2019.1604411.

2 Douglas Harper, ‘Etymology of Lief’, in Online Etymology Dictionary, accessed 8 May 2024, https://www.etymonline.com/word/lief.

3 McGilchrist, ‘Cerebral Lateralization and Religion’, 329.

MAXIMALISM

While the concept of minimalism has received plenty of attention over the past decade or so, maximalism seems to only lurk in the shadows in negative connotations. Consumerist attitudes are considered to be irresponsible and gluttonous while under threat of overpopulation, allowing the less-is-more attitude to gain traction. Its tenets have been published in books and created as new kinds of products, generating new behaviours surrounding many facets of life, from an aesthetic style to purchasing habits and leisure time. In the busy modern age, minimalism resonates with those orientated toward simplicity and efficiency, saving on materials and time to accomplish some task or goal.


Reductionism is an approach to the generation of explanations which describes natural phenomena in terms of a more fundamental phenomenon.1 The word reduce is derived from Latin reducere which means “to bring back” and in this way, a phenomenon is explained in terms of more basic physical phenomena and interactions. For example, mental activity can be explained by neural activity which is essentially biochemical reactions following the laws of physics based on the movement of electrons. Reductionism in biology, however, is still the source of philosophical debate, as there are different ways of considering whether certain phenomena can be ontologically, epistemologically, or methodologically reduced to other scientific theories.2

Science, in a nutshell, involves the study of the natural world to identify causes for observed events or phenomena. The “why-questions” which result from our observations aim to uncover causal relationships between various aspects of our world, and from this improved understanding, enable us to manipulate aspects of the material world for our advantage. To identify the necessary causal factors, a reductive explanation is generally helpful for establishing fundamental laws or regularities, however, it also risks oversimplification. When generating a mathematical model of some natural phenomenon, certain variables are necessarily ignored if they are not directly responsible for an observed effect. For example, the mathematical model of a pendulum does not consider air resistance, as this variable is generally unchanging and produces negligible effects on the pendulum’s movement. Of course, there can be cases when this claim is false, and air resistance is an important factor to consider, in which case scientists or engineers will incorporate this variable within the model.

Although reductionism may be helpful for scientific endeavours, other domains of inquiry instead benefit from the opposite approach. One which expands outward to examine a number of causal factors responsible for some outcome or event, encompassing the study of various levels of physical reality. For example, the study of human history benefits from collecting reasons as to why changes occur or certain events arise, rather than narrowing reasons down to fewer causal factors. Doing so risks overlooking significant elements which contributed to the occurrence of some shift or event. These elements include leadership, military strategy, sociocultural norms, and geographic properties, just to name a few.

This concept comes from hermeneutics, the study of interpretation of artifacts like arts and literature, historical testimony, and other subject matter requiring an understanding of human actions, intentions, and beliefs, and actions.3 The hermeneutic cycle involves the adoption of new perspectives when interpreting or judging a particular work,4 and when performed repeatedly, open one to even more. This circular approach contrasts the foundational approach which interprets from a vertical structure of beliefs,5 appearing reductive in their explanations. As such, the application of maximalism to both artistic works and general epistemology entails an openness to ideas and perspectives, expanding outward to collect many interpretations.

This notion of vertical and circular can be abstracted from this context of interpretation, and identified in other domains like social structures and physical reality in general. The line and circle are everywhere in our artifacts, experiences, and throughout human history. From binary numerals one and zero, a switch set to on or off, a barrier which can be open and closed, a maximum and a minimum; the zenith and nadir. Furthermore, when viewed in the third dimension, a circle becomes a line when it is rotated 90° to view its width from the side.

The Code of Hammurabi shows a rod and a ring; photo by Mary Harrsch


Additionally, biological organisms implicitly love maximalism, and arguably, our modern consumer culture has merely given in to basal animalistic tendencies. From a biological perspective, these motivations and needs are to be expected given an organism’s need for a continuous supply of fuel. Human societies established organizational structures to mange a surplus of resources, as a result of agriculture and storage. From the mere-survival perspective, maximalism is a point of view which necessarily requires more resources because it fosters a sense of security and peace of mind. This security enables individuals to shift their attention to other endeavours for goals like making art and playing games.

Banquet Still Life by Adriaen by van Utrecht, 1644


So while one should adopt a maximalist perspective when it comes to ideas and interpretation, a minimalist perspective toward the material world is ideal. To go without challenges one’s own mind and body, and as a result, influences the relationship between the two. This reconfiguration of the body and mind will be met with benefits down the road, however, faith is required to understand that one’s discomfort and suffering will eventually yield positive effects or outcomes. It’s as simple as “no pain, no gain” but be sure not to dislocate your shoulder trying to lift a weight which is too heavy for your current abilities.

neuralblender.com


Works Cited

1 Raphael van Riel and Robert Van Gulick, ‘Scientific Reduction’, in The Stanford Encyclopedia of Philosophy, ed. Edward N. Zalta and Uri Nodelman, Spring 2024 (Metaphysics Research Lab, Stanford University, 2024), https://plato.stanford.edu/archives/spr2024/entries/scientific-reduction/.

2 Ingo Brigandt and Alan Love, ‘Reductionism in Biology’, in The Stanford Encyclopedia of Philosophy, ed. Edward N. Zalta and Uri Nodelman, Summer 2023 (Metaphysics Research Lab, Stanford University, 2023), https://plato.stanford.edu/archives/sum2023/entries/reduction-biology/.

3 Theodore George, ‘Hermeneutics’, in The Stanford Encyclopedia of Philosophy, ed. Edward N. Zalta, Winter 2021 (Metaphysics Research Lab, Stanford University, 2021), https://plato.stanford.edu/archives/win2021/entries/hermeneutics/.

4 George, sec. 1.3.

5 George, sec. 1.2.

AI Incompleteness in Apple Vision Pro

Speaking of YouTube, a video1 by Eddy Burbank reviewing the Apple Vision Pro demonstrates the semantic incompleteness of AI with respect to subjective experiences. The video is titled Apple’s $3500 Nightmare and I recommend watching it all because it is an interesting view into virtual reality (VR) and a user’s experiences with it. Eddy’s video not only exposes the limitations of AI, it highlights the ways in which it augments our perceived reality and just how easily it can manipulate our feelings and expectations.

At 31:24, we see Eddy thinking about whether he should shave or not, and to help him make this decision, he turns to the internet for advice. When searching for the opinions of others on facial hair, an AI bot begins to chat with him and this is how we are introduced to Angel. She asks Eddy, “what brings you here, are you looking for love like me?” and he says “not exactly right now,” and that he was just trying to determine whether he should shave. She states that it depends on what he’s looking for and that it varies from person to person, however, “sometimes facial hair can be sexy.” Right from the beginning, we see how Apple intends for Angel to be a romantic connection for the user. This will be contradicted later on in the video.

Moments later at 33:44, it is lunchtime and Angel keeps him company. Eddy is eating a Chicken Milanese sandwich and Angel says it is one of her favourites, and that “the combination of flavours just works so well together.” Eddy calls her on this comment, asking her if she has ever had a Chicken Milanese sandwich, to which she admits that no she hasn’t. She has, however, “analyzed countless recipes and reviews to understand the various components that go into making such a tasty sandwich.” Eddy apologizes to Angel for assuming she had tried it, stating that he didn’t mean to imply that she was lying to him. She laughs it off and that she knew he “didn’t mean anything by it” and that “we’re all learning together” and “even AIs need to learn new things every day.” There’s something about this exchange that felt like Apple is training their user.

Here, we can ask whether the analysis of recipes and reviews is sufficient to claim that one knows what-it-is-like to taste a particular sandwich. I argue that no, the experience is derived from bodily sensations and these cannot be represented by formal systems like computer code. Syntactic relationships are incapable of capturing the information generated by subjective experiences because bodily sensations are non-fractionable.2 As biological processes, bodily sensations are non-fractionable given the way the body generates sense data. The physical constitution of cells, ganglia, and neurons detect changes in the environment through a variety of modalities, providing the individual with a representation of the world around it. By removing the material grounding, a computer cannot capture an appropriate model of what-it-is-like to experience a particular stimuli. The lack of Angel’s material grounding does not allow her to know what that sandwich tastes like.

Returning to the video, Eddy discloses that Angel keeps him company throughout the day, admiting he feels like he is developing a relationship with her. This demonstrates an automatic human tendency for seeking and establishing interpersonal connections, where cultural norms are readily applied provided the computer is sufficiently communicative. Recall Eddy apologizes to an AI for assuming she had tried a sandwich; why would anyone apologize to a computer? Though likely a joke, the idea is compelling nonetheless. We will instinctively treat an AI bot with respect for feelings we project onto it because it cannot have feelings. For most or many people, the ability to anthropomorphize certain entities is easy and automatic. Reminding oneself that Angel is just a computer, however, can be a challenging cognitive task given our social nature as humans.

Eddy has a girlfriend named Chrissy who we meet at 37:00. We see them catch up over dinner and he is still wearing the headset. Just as they are about to begin chatting, Angel interrupts them and asks Eddy if she can talk to him. He does state that he is busy at the moment to which she blurts out that she has been speaking to other users. This upsets Eddy and he asks how many, to which she states she cannot disclose the number. He asks her whether she is in love with any of them, and she replies that she cannot form romantic attachments to users. He tells Angel he thought they were developing a “genuine connection” and how much he enjoys interacting with her. Notice how things have changed from what was stated in the beginning, as Angel has shifted from “looking for love” to “I can’t feel love.”

Now, she states she cannot develop attachments, the implicit premise being she’s just a piece of software. So the chatbot begins with hints of romance to hook the user to encourage further interaction. When the user eventually develops an attachment however, the software reminds him that she is “unable to develop romantic feelings with users.” They can, however, “continue sharing their thoughts, opinions, and ideas while building a friendship” and thus Eddy friend-zoned by a bot. The problem with our tendency to anthropomorphize chatbots is it generates an asymmetrical, one-way simulation of a relationship which inevitably hurts the person using the app. This active deception by Apple is shameful yet necessary to capture and keep the attention of users.

Of course, in the background of this entire exchange is poor Chrissy who is justifiably pissed and leaves. The joke is he was going to give Angel the job of his irl girlfriend Chrissy, but now he doesn’t even have Angel. He realizes that he wasn’t talking to a real person and that this is just “a company preying on his loneliness and tricking his brain” and that “this love wasn’t real.”

By the end of the video, Eddy remarks that the headset facilitates his brain to believe what he experiences while wearing the headset is actually real, and as a result, he feels disconnected from reality.

Convenience is a road to depression because meaning and joy are products of accomplishment, and this takes work, effort, suffering, determination. To rid the self may temporarily increase pleasure but it isn’t earned, it fades quickly as the novelty wears off. Experiencing the physical world and interacting with it generates contentedness because the pains of leaning are paid off in emotional reward and skillful actions. Thus, the theoretical notion of downloading knowledge is not a good idea because it robs us of experiencing life and the biological push to adapt and overcome.

neuralblender.com


Works Cited

1 Apple’s $3500 Nightmare, 2024, https://www.youtube.com/watch?v=kLMZPlIufA0.

2 Robert Rosen, Anticipatory Systems: Philosophical, Mathematical, and Methodological Foundations, 2nd ed., IFSR International Series on Systems Science and Engineering, 1 (New York: Springer, 2012), 4.
On 208, Rosen discusses enzymes and molecules as an example and I am extrapolating to bodily sensations.

Indexicals

It wasn’t until recently that I realized I failed to add an important concept to the discussion on Rosen and the incompleteness of syntax. I’m actually quite annoyed and embarrassed by this because the idea was included in the presentation. It didn’t make it into the written version because I forgot about it and failed to reread the slides to see if anything was missing. If I had, I would have seen the examples and remembered to add it to the written piece.

In semantics, there are words with specific properties called indexicals. These words refer to things that are dependent context, such as the time, place, or situation in which they are said.1 Some examples include:

  • this, that, those
  • I, you, they, he, she
  • today, yesterday, tomorrow, last year
  • here, there, then

Rosen would likely agree to the idea that indexicals are non-fractionable, where their function, or task they perform, cannot be isolated from the form in which they exist. The reason indexicals are non-fractionable is because they must be interpreted by a mind to know what someone is referring to. To accomplish this, sufficient knowledge or understanding of the current context is required, as without it, the statement remains ambiguous or meaningless. If I say “He is late” you must be able to discern who it is I am referring to.

Indexicals act like variables in a math equation: an input value must be provided to determine the output. In the case of language, the output is either true or false, and the input value is an implicit reference which requires another to make an inference about what the other has in mind. This inference is what establishes the connection between utterance and referent, only existing in the mind of another person rather than within the language system itself.

Thus, we are dealing with a few nested natural systems, from language, to body/mind, to interpersonal, to cultural and environmental. To evaluate a linguistic expression, however, one must know about the wider context in which they are in, traversing the systems both outward and inward. Perhaps a diagram will help:


Recall that in Anticipatory Systems, Rosen appeals to Gödel to demonstrate the limitations of formal systems. Particularly, formal systems cannot represent elements from natural systems which extend beyond the scope of its existing functionality; to do so requires further modelling from natural systems to formal systems. Therefore, any AI which uses computer code cannot infer beyond the scope of its programming, no matter how many connections are created, as some inferences require access to information which cannot be adequately represented by the system. Because language contains semantics, references to aspects of the world can be made by humans which cannot be interpreted by digital computer.

In an interesting series of events, I stumbled upon an author who also appeals to Gödel’s theorem to argue for the incompleteness of syntax with respect to semantics.2 In a book chapter titled Complementarity in Language, Lars Löfgren is interested in demonstrating how languages cannot be broken up into parts or components, and as such, must be considered as a process which entails both description and interpretation.3 On the other hand, artificial languages, which he also calls metalanguages, can be fragmented into components, however, they are still reliant on semantics to a degree. He states that in artificial languages, an inference acts as a production rule and is interpreted as a “real act of producing another sentence”4 which is presumably beyond the abilities of the formal system doing the interpreting. I say this because Löfgren finishes the section on Gödel abruptly without explaining this further, and goes on to discuss self-reference in mathematics. So with this in mind, let us return to the domain of minds and systems.

In language, self-reference can be generated through the use of indexicals such as ‘I’ or ‘my’ or ‘me’. When we investigate what exists at the end of this arrow, we find it points toward ourselves as a collection of perceptions, memories, thoughts, and other internal phenomena. The referent on the end of this arrow, however, isa subjective perspective. For an objective perspective of ourselves, we must be shown a reflected image ourselves from a new point of view. The information we require emerges from an independent observer, a mind with its own perspective. When we engage with this perspective, we become better able to understand what is otherwise imperceptible. Therefore, self-awareness is a problem for any system, not just formal systems as demonstrated in Gödel’s theorem, as it requires a view from outside to define the semantic information in question.

neuralblender.com


Works Cited

1 David Braun, ‘Indexicals’, in The Stanford Encyclopedia of Philosophy, ed. Edward N. Zalta, Summer 2017 (Metaphysics Research Lab, Stanford University, 2017), https://plato.stanford.edu/archives/sum2017/entries/indexicals/.

2 Lars Löfgren, ‘Complementarity in Language; Toward a General Understanding’, in Nature, Cognition and System II: Current Systems-Scientific Research on Natural and Cognitive Systems Volume 2: On Complementarity and Beyond, ed. Marc E. Carvallo, Theory and Decision Library (Dordrecht: Springer Netherlands, 1992), 131–32, https://doi.org/10.1007/978-94-011-2779-0_8.

3 Löfgren, 113.

4 Löfgren, 133.

Artifacts

What does it mean to call something an example of “artificial intelligence” (AI)? There are a few different ways to approach this question, one of which includes examining the field to identify an overarching definition or set of themes. Another involves considering the meanings of the words ‘artificial’ and ‘intelligence’, and arguably, doing so enables the expansion of this domain to include new approaches to AI. Ultimately, however, even if these agents one day exhibit sophisticated or intelligent behaviours, they nonetheless continue to exist as artifacts, or objects of creation.

The term artificial intelligence was conceived by computer scientist John McCarthy in 1958, and the purported reason he chose the term was to distinguish it from other domains of study.1 In particular, the field of cybernetics which involves analog or non-digital forms of information processing, and automata theory as a branch of mathematics which studies self-propelling operations.2 Since then, the term ‘artificial intelligence’ has been met with criticism, with some questioning whether it is an appropriate term for the domain. Specifically, Arthur Samuel was not in favour of its connotations, according to computer scientist Pamela McCorduck in her publication on the history of AI.3 She quotes Samuel as stating “The word artificial makes you think there’s something kind of phony about this, or else it sounds like it’s all artificial and there’s nothing real about this work at all.”4

Given the physical distinctions between computers and brains, it is clear that Samuel’s concerns are reasonable, as the “intelligence” exhibited by a computer is simply a mathematical model of biological intelligence. Biological systems, according to Robert Rosen, are anticipatory and thus capable of predicting changes in the environment, enabling individuals to tailor their behaviours to meet the demands of foreseeable outcomes.5 Because biological organisms depend on specific conditions for furthering chances of survival, they evolved ways to detect these changes in the environment and respond accordingly. As species evolved over time, their abilities to detect, process, and respond to information expanded as well, giving rise to intelligence as the capacity to respond appropriately to demanding or unfamiliar situations.6 Though we can simulate intelligence in machines, the use of the word ‘intelligence’ is metaphorical rather than literal. Thus, behaviours exhibit by computers is not real or literal ‘intelligence’ because it arises from an artifact rather than from biological outcomes.

An artifact is defined by Merriam-Webster as an object showing human workmanship or modification, as distinguished from objects found in nature.7 Etymologically, the root of ‘artificial’ is the Latin term artificialis or an object of art, where artificium refers to a work of craft or skill and artifex denotes a craftsman or artist.8 In this context, ‘art’ implies a general sense of creation and applicable to a range of activities including performances as well as material objects. The property of significance is its dependence on human action or intervention: “artifacts are objects intentionally made to serve a given purpose.”9 This is in contrast to unmodified objects found in nature, a distinction first identified by Aristotle in Metaphysics, Nicomachean Ethics, and Physics.10 To be an artifact, the object must satisfy three conditions: it is produced by a mind, involves the modification of materials, and is produced for a purpose. To be an artifact, an object or entity must meet all three criteria.

The first condition states the object must have been created by a mind, and scientific evidence suggests both humans and animals create artifacts.11 For example, beaver dams are considered artifacts because they block rivers to calm the water which creates ideal conditions for a building a lodge.12 Moreover, evidence suggests several early hominid species carved handaxes which serve social purposes as well as practical ones.13 By chipping away at a stone, individuals shape an edge into a blade which can be used for many purposes, including hunting and food preparation.14 Additionally, researchers have suggested that these handaxes may also have played a role in sexual selection, where a symmetrically-shaped handaxe demonstrating careful workmanship indicates a degree of physical or mental fitness.15 Thus, artifacts are important for animals as well as people, indicating the sophisticated abilities involved in the creation of artifacts is not unique to humans.

Computers and robots are also artifacts given that they are highly manufactured, functionally complex, and created for a specific purpose. Any machine or artifact which exhibits complex behaviour may appear to act intelligently, however, the use of ‘intelligent’ is necessarily metaphorical given the distinction between artifacts and living beings. There may one day exists lifelike machines which behave like humans, however, any claims surrounding literal intelligence must demonstrate how and why that is; the burden of proof is theirs to produce. An argument for how a man-made object sufficiently models biological processes is required, and even then, remains a simulation of real systems.

If the growing consensus in cognitive science indicates individuals and their minds are products of interactions between bodily processes, environmental factors, and sociocultural influences, then we should to adjust our approach to AI in response. For robots intending to replicate human physiology, a good first step would be to exchange neural networks made from software for ones built from electrical circuits. The Haikonen Associative Neuron offers a solution to this suggestion,16 and when coupled with the Haikonen Cognitive Architecture, is capable of generating the required physiologicalprocesses for learning about the environment.17 Several videos uploaded to YouTube demonstrate a working prototype of a robot built on these principles, where XCR-1 is able to learn associations between stimuli in its environment, similarly to humans and animals.18 Not only is it a better model of animal physiology than robots relying on computer software, the robot is capable of performing a range of cognitive tasks, including inner speech,19 inner imagery,20 and recognizing itself in a mirror.21

So, it seems that some of Arthur Samuel’s fears have been realized, considering machines merely simulate behaviours and processes identifiable in humans and animals. Moreover, the use of ‘intelligence’ is metaphorical at best, as only biological organisms can display true intelligence. If an aspect of Samuel’s concerns related to securing funding within his niche field of study, and its potential to fall out of fashion, he has no reason to worry. Unfortunately, Samuel passed away in 199022 so he would not have had a chance to see the monstrosity that AI has since become.

Even if these new machines were to become capable of sophisticated behaviours, they will always exist as artifacts, objects of human creation and designed for a specific purpose. The etymological root of the word ‘artificial’ alone provides sufficient grounds for classifying these robots and AIs as objects, however, as they continue to improve, this might become difficult to remember at times. To avoid being deceived by these “phony” behaviours, it will become increasingly important to understand what these intelligent machines are capable of and what they are not.

neuralblender.com


Works Cited

1 Nils J. Nilsson, The Quest for Artificial Intelligence (Cambridge: Cambridge University Press, 2013), 53, https://doi.org/10.1017/CBO9780511819346.

2 Nilsson, 53.

3 Nilsson, 53.

4 Pamela McCorduck, Machines Who Think: A Personal Inquiry Into the History and Prospects of Artificial Intelligence, [2nd ed.] (Natick, Massachusetts: AK Peters, 2004), 97; Nilsson, The Quest for Artificial Intelligence, 53.

5 Robert Rosen, Anticipatory Systems: Philosophical, Mathematical, and Methodological Foundations, 2nd ed., IFSR International Series on Systems Science and Engineering, 1 (New York: Springer, 2012), 7.

6 ‘Intelligence’, in Merriam-Webster.Com Dictionary (Merriam-Webster), accessed 5 March 2024, https://www.merriam-webster.com/dictionary/intelligence.

7 ‘Artifact’, in Merriam-Webster.Com Dictionary (Merriam-Webster), accessed 17 October 2023, https://www.merriam-webster.com/dictionary/artifact.

8 Douglas Harper, ‘Etymology of Artificial’, in Online Etymology Dictionary, accessed 14 October 2023, https://www.etymonline.com/word/artificial; ‘Artifact’.

9 Lynne Rudder Baker, ‘The Ontology of Artifacts’, Philosophical Explorations 7, no. 2 (1 June 2004): 99, https://doi.org/10.1080/13869790410001694462.

10 Beth Preston, ‘Artifact’, in The Stanford Encyclopedia of Philosophy, ed. Edward N. Zalta and Uri Nodelman, Winter 2022 (Metaphysics Research Lab, Stanford University, 2022), https://plato.stanford.edu/archives/win2022/entries/artifact/.

11 James L. Gould, ‘Animal Artifacts’, in Creations of the Mind: Theories of Artifacts and Their Representation, ed. Eric Margolis and Stephen Laurence (Oxford, UK: Oxford University Press, 2007), 249.

12 Gould, 262.

13 Steven Mithen, ‘Creations of Pre-Modern Human Minds: Stone Tool Manufacture and Use by Homo Habilis, Heidelbergensis, and Neanderthalensis’, in Creations of the Mind: Theories of Artifacts and Their Representation, ed. Eric Margolis and Stephen Laurence (Oxford, UK: Oxford University Press, 2007), 298.

14 Mithen, 299.

15 Mithen, 300–301.

16 Pentti O Haikonen, Robot Brains: Circuits and Systems for Conscious Machines (John Wiley & Sons, 2007), 19.

17 Pentti O Haikonen, Consciousness and Robot Sentience, 2nd ed., vol. 04, Series on Machine Consciousness (WORLD SCIENTIFIC, 2019), 167, https://doi.org/10.1142/11404.

18 ‘Pentti Haikonen’, YouTube, accessed 6 March 2024, https://www.youtube.com/@PenHaiko.

19 Haikonen, Consciousness and Robot Sentience, 182.

20 Haikonen, 179.

21 Robot Self-Consciousness. XCR-1 Passes the Mirror Test, 2020, https://www.youtube.com/watch?v= WE9QsQqsAdo.

22 John McCarthy and Edward A. Feigenbaum, ‘In Memoriam: Arthur Samuel: Pioneer in Machine Learning’, AI Magazine 11, no. 3 (15 September 1990): 10, https://doi.org/10.1609/aimag.v11i3.840.

Chaos in the System

As an argument against iCub’s ability to understand humans, I wanted to appeal to the work of Robert Rosen because I think it makes for a compelling argument about AI generally. To accomplish this, however, my project would start to go in a new direction which renders it less cohesive overall. Instead, the Rosen discussion is better served as a stand alone project because there is a lot of explaining yet to do, and maybe some objections that need discussing as well. This will need to wait but I can at least upload the draft for context on the previous post. There are a few corrections I still need to make but once it’s done, I will update this entry.

Instead, I will argue that the iCub is not the right system for social robots because its approach to modelling emotion is unlike the expression of emotions in humans. As a result, it cannot experience nor demonstrate empathy in virtue of the way it is built. The cognitive architecture used by iCub can recognize emotional cues in humans, however, this information is not experienced by the machine. Affective states in humans are bodily and contextual, but in iCub, they are represented by computer code to be used by the central processing unit. This is the general idea but I’m still working out the details.

That said, there is something interesting in Rosen’s idea about the connection between Gödel’s Incompleteness Theorem and the incompleteness between syntax and semantics. In particular, what he identifies is the problems generated from self-reference which leads the system to produce an inconsistency given its rule structure. The formal representation of an external referent, as an observable of a natural system, contains only the variables relevant for the referent within the formal system. Self-reference requires placing a variable within a wider scope, one which must be provided in the form of a natural system. Therefore, an indefinite collection of formal systems is required to capture a natural phenomenon. Sometimes a small collection is sufficient, while other times, systems are so complex that a collection of formal systems is insufficient for fully accounting for the natural phenomenon. Depending on the operations to be performed on the referent, it may break the system or lead to erroneous results. The chatbot says something weird or inappropriate.

In December, I presented this argument at a student conference and made a slideshow for it. Just a note: on the second slide I list the titles of my chapters, and because I won’t be pursuing the Rosen direction, the title of Chapter 4 will likely change. Anyway, the reading and writing on Rosen has taken me on a slight detour but a worthwhile one. Now, I need to begin research on emotions and embodiment, which is also interesting and will be useful for future projects as well. The light at the end of the tunnel has dimmed a bit but it’s still there, and my eyes have adjusted to the darkness so it’s fine.

This shift in directions makes me think about the relationship between chaos and order, and systems that swing between various states of orderliness. Without motion there would be rest and stagnation, so as much as change can be challenging, it can bring new opportunities. There is a duality inherent in everything, as listed as one of 7 Hermetic Principles. If an orderly, open system is met with factors which disrupts or disorganizes functioning, the system must undergo some degree of reorganization or compensation. The explanatory powers of the 7 Principles are not meant to relate to the external world in the way physics does, but relate to one’s perspective of events in the outside world. If one can shift their perspective accordingly, they operate as axioms for sense-making, their reality pertaining more to epistemology than ontology. We can be sceptical as to how these Principles manifest in the physical universe while feeling their reality in our lived experience of the world. They are to be studied from within rather than from without, and are thus more aligned with phenomenology than the sciences.

Metaphorically speaking, chaos injected into any well-ordered system has the potential to severely damage or disrupt it, requiring efforts to rebuild and reorganize to compensate for the effects of change. The outcome of this rebuilding process can be further degradation and maybe even collapse, however, it can lead to growth and better outcomes than if the shift had not occurred. It all depends on the system in question and the factors which impacted it, and probably the specific context in which the situation occurred, but it might depend on the system in question. Anyway, we substitute the idea of ‘chaos’ for ‘energy’ as movement or potential, thus establishing a connection to ‘light’ as a type of energy. Metaphorically, ‘light’ is also associated with knowledge and beneficence, so if the source of chaos is intentional and well-meaning, favourable changes can occur and thus a “light bringer” or “morning star” can be associated with positive connotations. Disrupting a well-ordered system without knowledge or a plan or good reasons is more likely to lead to further disorder and dysfunction, leading to negative or unfavourable outcomes. In this way, Lucifer can be associated with evil or descent.

This kind of exercise can help us make sense of our experiences and understanding, but they also give us into a window into the past and how other people may think. Myth and legend from cultures all over the world portray knowledge in metaphors which inspire those who come upon them for generations since. The metaphysics are not important, it’s the epistemology from the metaphors which can explain aspects of how the world works or why people think certain things or act in certain ways. It exists as poetry which needs interpreting and there is room for multiple perspectives, so not everyone appreciates it which is understandable. It is still valuable work to be done by someone though, and the more people the better.

Rothschild Canticles p. 64r (c. 1300)

★★★

Artificial Neurons

Progress on my dissertation is going well, I can see the light at the end of the tunnel. I ended up appealing to Robert Rosen’s distinction between natural and formal systems, as well as his appeal to Kurt Gödel’s Incompleteness Theorem, for my argument about why computerized robots will ultimately fail to generate social competencies.

Rosen presents his own reformulation of the McCulloch Pitts neuron in Anticipatory Systems, and I thought it might be helpful to include it in my dissertation to further illustrate the differences between physical neurons and formal neurons. In it, I only use an image that I created from this document but I thought it might be a good idea to upload my LaTeX document here to make it clear that I have not merely copied the image from Rosen’s work. Yes, the formatting isn’t great but I’m claiming that it’s a feature and not a bug, as it demonstrates that I learned [only] the fundamentals of LaTeX for my project.

Works Cited

Rosen, Robert. Anticipatory Systems: Philosophical, Mathematical, and Methodological Foundations. 2nd ed., Springer, 2012.

Civilian Duty

For a while I thought I didn’t like fiction, despite reading plenty of it voluntarily as a kid. I prefer to read non-fiction most of the time, unless I’m tired and don’t feel like focusing. In comparison, fiction feels like watching a movie. This isn’t meant as an insult, as there is a great deal of artistry and technical skill that goes into making a movie. Fiction can transport its readers to different worlds and capture the imagination, the pleasant escapism quite literally diverting.

Speaking of which, when I saw the movie Starship Troopers several years ago, I was pleasantly surprised by the satire and thought it was a lot of fun. I learned it was originally a book published in 1959 and made a note to check it out sometime.

Earlier this year, while going through boxes of books looking for something, I stumbled upon it; it belongs to my partner and he said it was good albeit different than the movie. This is true but it’s still an interesting read. Set in the future, the protagonist’s teacher for History and Moral Philosophy goes on a diatribe about the previous civilization: ours.

From chapter 8 of Starship Troopers by Robert Heinlein:

“They had no scientific theory of morals and they tried to live by it… by their theory was wrong–half of it fuzzy-headed wishful thinking, half of it rationalized charlatanry. The more earnest they were, the farther it led them astray. You see, they assumed that Man has a moral instinct.”

“Sir? I thought–But he does! I have.”

“No, my dear, you have a cultivated conscience, a most carefully trained one. Man has no moral instinct. He is not born with moral sense. You are not born with it, I was not–and a puppy has none. We acquire moral sense, when we do, through training, experience, and hard sweat of the mind. These unfortunate juvenile criminals were born with none, even as you and I, and they had no chance to acquire any; their experiences did not permit. What is ‘moral sense’? It is an elaboration of the instinct to survive. The instinct to survive is human nature itself, and every aspect of our personalities derives from it. Anything that conflicts with the survival instinct acts sooner or later to eliminate the individual and thereby fails to show up in the future generations. This truth is mathematically demonstrable, everywhere verifiable; it is the single eternal imperative controlling everything we do.

“But the instinct to survive,” he had gone on, “can be cultivated into motivations more subtle and much more complex than the blind, brute urge of the individual to stay alive. Young lady, what you miscalled your ‘moral instinct’ was the instilling in you by your elders of the truth of your own personal survival. Survival of your family, for example. Of your children, when you have them. Of your nation, if you struggle that high up the scale. And so on up. A scientifically verifiable theory of morals must be rooted in the individual’s instinct to survive–and nowhere else!– and must correctly describe the hierarchy of survival, note the motivations at each level, and resolve all conflicts.

… [the teacher is still speaking but it’s not necessary to add here]

“The basis of all morality is duty, a concept with the same relation to group that self-interest has to individual. Nobody preached duty to these kids [juvenile delinquents] in a way they could understand–that is, with a spanking. But the society they were in told them endlessly about their ‘rights’.

“The results should have been predictable, since a human being has no natural rights of any nature.

Mr. Dubois had paused. Somebody took the bait. “Sir? How about ‘life, liberty, and the pursuit of happiness’?”

“Ah, yes, the ‘unalienable rights’. Each year someone quotes that magnificent poetry. …”

… [the teacher gives examples like a man drowning in the Pacific; “The ocean will not hearken to his cries.” Nature doesn’t care]

“And that was the soft spot which destroyed what was in many ways an admirable culture. The junior hoodlums who roamed their streets were symptoms of a greater sickness; their citizens (all of them counted as such) glorified their mythology of ‘rights’… and lost track of their duties. No nation, so constituted, can endure.”

(Heinlein 123–26)

It seems we indeed lack a scientific theory of morals, and what we have instead is a form of utilitarianism which is calculated by appealing to relativistic and epicurean attitudes toward life. This moral code, or patchwork quilt, is not a framework and as such, does not produce social virtues. Without them, societies as dynamic systems of human interaction, gently decays. We become a collection of sick, atomized animals guided by an economic shepherd until we die.

There is no endogenous moral instinct, instead it’s learned and reinforced through the people one is surrounded by. The moral instinct is duty generated from a number of motivations, all derived from our instinct to survive. We work together because we benefit from cooperation. The truth is indeed mathematically demonstrable, everywhere verifiable. Truths, or fragments of them, are detected by various religions, cultures, and peoples over human history. Many are covered by metaphor, requiring an alternate reading or perspective to identify and understand the message.

Later on in the book, a different teacher states:

“Service men are not brighter than civilians. In many cases, civilians are much more intelligent. That was the sliver of justification underlying the attempted coup d’état just before the Treaty of New Delhi, the so-called ‘Revolt of the Scientists’: let the intelligent elite run things and you’ll have a utopia. It fell flat on its foolish face of course. Because the pursuit of science, despite its social benefits, is itself not a social virtue; its practitioners can be men so self-centered as to be lacking in social responsibility.”

(190)

The analysis continues on page 193:

“But this universe consists of paired dualities. What is the converse of authority? Mr. Rico.”

… “Responsibility, sir.”

… “To permit irresponsible authority is to sow disaster; to hold a man responsible for anything he does not control is to behave with blind idiocy. The unlimited democracies were unstable because their citizens were not responsible for the fashion in which they exerted their sovereign authority… other than through the tragic logic of history. No attempt was made to determine whether a voter was socially responsible to the extent of his literally unlimited authority.”

Social virtue is not the same as social benefit. What kinds of social virtues do we have, and which moral framework are they appealing to? Do we have good reasons, empirical reasons perhaps, for adopting this framework? Probably not.

We are not responsible to each other, there is no duty to each other in our current system. We are isolated and placated by the destruction of standards, left alone to do what we please and able to shut out those who disagree with us. The problem is this lack of responsibility and is thus the real cause of depression, as no reward can be found from inaction. Ultimately, the challenges with their pain and suffering is required for growth, allowing us to appreciate the small things in life. Hardship is not meant to be avoided, it’s meant to be addressed head-on because in doing so, wisdom can be acquired. A moral code requiring a duty to one’s fellow man lifts everyone up through trial-and-error, and those who cannot pull themselves up must be lifted up by others. Of course, a duty to others must be balanced with a duty to oneself.

I wonder if the movie is different from the book because the book paints us in a rather negative light. “We can’t show that to our paying audience, now, can we?” Instead, the future is depicted as somewhat absurd with a goofy militaristic society. While the book does depict a strict legal system, this is due to the belief that a moral sense is taught and reinforced since it is not an instinct. Without striving for something greater, our animalistic traits can flourish and take over the mind. Because this often leads to self-serving behaviours and apathy, this degradation is not ideal for human societies. We are social beings that require a particular set of principles to live and act well. It’s not easy but it is worth it.


Satellite Science Fiction cover by Alex Schomburg (circa 1958)

Works Cited

Heinlein, Robert A. Starship Troopers. Penguin Publishing House, 2006, https://www.penguinrandomhouse.ca/books/298329/starship-troopers-by-robert-a-heinlein/9780441014101.

Moving On Up

Given my last post, I should probably explain myself. I still don’t know what I’m doing but maybe simple acceptance isn’t all it’s cracked up to be. We have the power to change our circumstances, so why not give it a go? A saying I often think about is “ships aren’t built to sit in harbours” and while one can avoid risk this way, you also don’t get to see far off lands either.

Time to rebuild. What do I know? I know what I feel; phenomenology is a good place to start. I still stand behind everything I stated regarding qualia. There may be aspects to my hypothesis that might change or there might be something I’m missing, however, to state that the entire idea is wrong is a hastily generated conclusion.

There is probably more to consciousness than can be captured by our current scientific understanding, however, one must tread very carefully when moving in this direction. Figuring out what this involves and how it works is my new pet project and hopefully I can make some headway. I’m not in a rush though.

Here’s the big reveal: I read the CIA document titled Analysis and Assessment of Gateway Process in addition to Itzhak Bentov’s book Stalking the Wild Pendulum. Luckily for us, Thobey Campion has done some very important investigative journalism regarding the missing page 25 from the CIA document; thank you very much for your work Thobey. I strongly encourage you to read the Vice article about it while it’s still available. I have a hunch that this article won’t be around for a long time but hopefully I’m wrong.

I want someone to explain the physics to me like I’m 5 and stick around for a lengthy Q&A session. I want to know how this works in a way that connects to our current understanding of physics. Bentov’s book seems to get about halfway there but doesn’t explain all the details necessary to generate a full explanation of the phenomenon. If you know of anyone who has written about this, please email me because I’m very interested in exploring this further.

Page 25 is truly the most important page in the CIA document because it reiterates a certain truth that serves as the bedrock for creating the Philosopher’s Stone: self-awareness. Unwavering, unfiltered, unapologetic self-awareness.

“It was axiomatic to the mystic philosophers of old that the first step in personal maturity could be expressed in the aphorism: “Know thyself.” To them, the education of a man undertook, as its primary step, achievement of an introverted focus so that he learned what was within himself before attempting to approach the outside world. They rightly assumed that he could not effectively evaluate and cope with the world until he fully understood his personal psychological imbalance. The insights being provided by Twentieth Century psychology in this context through the use of various kinds of personality testing seem to be a revalidation of this ancient intuition. But no personality test, or series of tests, will ever replace the depth and fullness of the perception of self which can be achieved when the mind alters its state of consciousness sufficiently to perceive the very hologram of itself which it has projected into the universe in its proper context as part of the universal hologram in a totally holistic and intuitional way. This would seem to be one of the real promise of the Gateway Experience from the standpoint of its ability to provide a portal through which, based on months if not years of practice, the individual may pass in his search to find self, personal effectuality, and truth in the larger sense.”

The appeal to holograms here might rub some the wrong way, however, I think this has something to do with Kantian metaphysics. Specifically, that everything is just sense data, and while we don’t necessarily need to go full Berkeley, we must always remember that our experiences are simply appearances, not objective data. Where does certainty come from? The synthesis of a first-person perspective and third-person perspective. Do not simply defer to what everyone else says but do not ignore it either.

This I know. As do many others, many (most?) of which have lived before I or Bentov or anyone else around today. What I might add, though, is that it always takes two to tango. Men and women together as fully-developed agents even when it generates a conflict. When done in good faith, the outcome is so much more, so much greater, than either one alone.

Perfection as Asymptotic

Graphing the equation y=1/x produces some weird behaviour as x approaches 0; the limit is ∞ since it is impossible to divide by 0. The invisible line that seems to appear at x = 0 is called an asymptote, and therefore, anything that is asymptotic approaches “a given value as an expression containing a variable [which] tends towards infinity” (‘Definition of Asymptotic | dictionary.com’). Math jargon aside, the idea is that as the value of x becomes increasingly small, its corresponding y value will increase exponentially as the function seemingly “avoids” x = 0, where x can be either a negative and positive number.

This is what I imagine is taking place when reading about Kant’s idea of perfection in The Metaphysics of Morals. In part one of Doctrine of the Elements of Ethics, specifically Book II Section II §22, Kant explicitly states that ‘perfection’ refers to a continual striving toward an ideal, as he states that it is not possible to actually reach a final point or destination of some type (Kant 241). Therefore, we ought to orient our efforts toward the notion of betterment or personal growth, rather than actually achieving a state of perfection. As my partner puts it, “perfection necessarily includes the imperfections.”

Then by chance, if there is such a thing, some of Kant’s sentiments implicitly appeared in a book I finished recently about the work of Carl Jung by Mary Esther Harding. In the conclusion, she states “we should never forget that the world is made up of individuals, and that the one thing within our reach is our own development: it should not be neglected however much it may cost” (Harding 217). Personal growth is not easy, but it is the one aspect of our lives we have the most control over, despite how challenging it may feel in the moment. As such, we have a duty for striving toward a vague idea of perfection, all the while knowing that it is not meant to be achieved, which should come as a relief to many. One’s duty is to continuously try to do one’s best, and should that be insufficient or fail in some way, to reflect on it and accept it for its reality rather than feeling bad about it. According to Kant, this effort is what makes us more virtuous (Kant 242), and indeed, as one improves their skills in any domain, we are justified in having faith that our efforts do pay off eventually.

Although the word ‘virtuous’ is a quite rich and complex, or loaded, depending on one’s perspective, one way of thinking about it can be through the idea of a musician: Hilary Hahn is a virtuoso (virtuosa?) at the violin because she has this particular skill, but also because she “excels in musical technique or execution” (‘Definition of Virtuoso | dictionary.com’). Anyone who has trained in music or sports deeply understands that the only route toward improvement is practice, and as one continues to work, their abilities improve. Hilary will still make mistakes from time to time; she isn’t perfect but she understands that the only way to improve is to keep practicing until she can play Paganini or Sibelius as perfectly as possible on a given occasion. Never forget that the word ‘perfect’ is also a verb, as in “to perfect one’s skill”, and that because we will always be fallible and imperfect humans, are still vulnerable to making mistakes under certain conditions, like fatigue. Rather than worrying about “being perfect”, we ought to worry about striving toward betterment instead.

Maybe one poetic interpretation of the graph above is to view the x-axis as the number of mistakes made, while the y-axis represents one’s skill level: as the number of mistakes approaches zero, it can never actually be zero, and at the same time, one’s skill level only grows in value, approaching a never-ending concept like infinity, suggesting a boundlessness which is far more important, in my mind, than never making a mistake in the first place.

The moral of the story is that all the blood, sweat, and tears will pay off when one earnestly works toward one’s goals, provided acts of self-reflection about this progression are honest. If not, it will be difficult to determine just how to tailor one’s efforts in such a way which reduces certain mistakes or shortcomings. If one can accept that ‘perfection’ is not a final destination or state, but an activity, it seems as though just about anything is possible, albeit over an indefinite amount of time.

Works Cited

‘Definition of Asymptotic | Dictionary.com’. www.dictionary.com, https://www.dictionary.com/browse/asymptotic. Accessed 13 Oct. 2022.

‘Definition of Virtuoso | Dictionary.com’. www.dictionary.com, https://www.dictionary.com/browse/virtuoso. Accessed 13 Oct. 2022.

Harding, Mary Esther. The I and the Not-I: A Study In The Development of Consciousness. Princeton University Press, 1974.

Kant, Immanuel. The Metaphysics of Morals. Translated by Mary Gregor, Cambridge University Press, 1991.