Category: Philosophy

Information Warfare

It seems we are in the midst of a new world war, except now it aims to lurk in the forms of soft power, coercion, and psychological manipulation. The Cold War essentially hibernated for a few years until Putin became powerful enough to relaunch it online by using Cambridge Analytica and Facebook, targeting major western superpowers like the United States and the United Kingdom. We are witnessing the dismantling of NATO as nations erode from the inside through societal infighting. War games are not mapped out on land and sea but in the minds of groups residing within enemy nations (Meerloo 99). By destabilizing social cohesion within a particular country or region, the fighting becomes self-sustaining and obscured.

Information is key for psychological operations; as sensing living beings, information is what allows us to make good decisions which allow us to achieve our goals and keep living as best as possible. Since information has the capacity to control the behaviours of individuals, power can be generated through the production and control of information. Today, a number of key scientific organizations and individuals are drunk with power as they are in positions to control what should be considered true or false. For the sake of resource management, and likely a dash of plain ol’ human greed, the pragmatic pressures of the world have shaped what was once a methodology into a machine that provides people with purported facts about reality. As a result, we are now battling an epistemic dragon driven by collecting more gold to sit on.

This suggests that the things we believe are extremely valuable to others around the world, in addition to being one of the most valuable things you possess. The information and perspective you can provide to others is valuable, either to the society you belong to or to those interested in seeing your society crumble. The adage about ideas “living rent free in your head” seems appropriate because cultural memes are causally effective; they shape the way you think and act and such, introduces a potential psychological harm. Critical thinking and introspection are important because they are processes which counteract the influence of other people, because by forcing individuals to dig deeper from their subjective point of view, one ends up consolidating and pruning their beliefs.

Collateral damage has shifted from bodies to minds and communities will continue to be torn apart until we develop a system for individuals to combat these external influences. Socrates has shown us that philosophical inquiry tends to irritate people, and the fact that mere scientific scepticism today is being met with ad hominems suggests we are on the right track. Remember, the goal is discourse rather than concrete answers, and an important component involves considering new and conflicting ideas. Be wary of what incentivizes other people but do not judge them for it. Compassion will be the most challenging part of this entire endeavour, but I believe in you.

Bayeux Tapestry Scene 52

Works Cited

Meerloo, Joost A. M. The Rape of the Mind:  The Psychology of Thought Control, Menticide, and Brainwashing. The World Publishing Company, 1956.

Math and Logic: software running on a kernel?

One of my favourite stories from human history involves the discovery of the relationship between mathematics and logic in the early 20th century, the one that ends in bitter disappointment and the birth of the computer. While I must admit that a portion of my appreciation for this topic is the direct result of a particular story-teller’s sparkling charisma, the mystery uncovered by Gödel’s Incompleteness Theorems has become a kind of meme-parasite that keeps eating at my cognitive energy. It’s one of those topics that I like to think about when I can’t sleep, and while it is on my to-do list of research projects, unfortunately its rank is pretty low for now. Since I have done little research in this area, the questions and propositions I am about to present are probably wrong or misguided to some degree, but here they are.

Could formal logic, as a representational format with axioms and guided by rules, provide us with a language for articulating laws of metaphysics? From a folk-theoretic perspective, we do this when we talk about whether something is or is not the case, or whether something could be possible given certain conditions. These yes-no questions return a boolean value which may influence further processing or decision-making, like whether or not to bring an umbrella. Our behaviour is governed by events in the real world occurring or failing to obtain, and while our neocortex may like the details of these events, our embodied, animal selves ultimately needs to make a decision about something. Examining simpler organisms, it seems the biological norm tends to involve a limited set of behavioural responses to environmental stimuli, like “fight or flight” for example, which are executed when certain conditions are met. It seems as though the nervous system operates similarly to the way computers use bits, in that if something is or is not the case, then a command can be executed. Notice how these operations are reliant on causation, events generated by physical regularities.Since these binary values serve as a foundation for formal logic more generally, we can identify a connection between tracking physical regularities and modern formal logic.

Being a naturalist, I’m inclined to think the universe works in strange ways and humans have been clever enough to capture some of that strangeness and represent it in accurately through formal systems like math and logic. Although these systems are human creations, they are able to correctly represent the aspects of our physical universe as a result of thousands of years of development. We know this because we have successfully sent humans to the moon and back again; if our formal systems were flawed in any way, such a trip would have made this fact more than apparent.

So what isthe difference between math and logic, aside the fact that there will be unprovable mathematical statements (Raatikainen)? I’m wondering if the devil is in the generativity mathematics provides and the pressure that puts on verification as a result. While logic can handle the processing of quantities, mathematics is like a specialized expansion pack that runs on top of logical systems. With the development of agriculture in early human history, we moved away to relying on the environment to a new type of self-reliance, one which requires physical records for accounting and bookkeeping. While aspects of this new formal system are isomorphic to rules and axioms in logic, mathematics creates a space for explaining physical laws and regularities. Mathematics can track aspects of the environment that logic cannot, like rates of change and probability, and provides us with more information about the details of our physical universe. Physics, as a modern topic of study, provides an epistemic foundation for human societies because it explains both ‘what’ and ‘how’, using the scientific method as a vetting process to inch us toward a decent understanding of reality.

Humans will always notice patterns in systems because that is what our brain has evolved to do, which means the act of verification requires the creation of a separate system because our questions abstract away from the particular to the general. If we want to know whether some local phenomena applies to the system globally, like whether the existence of twin primes continues on indefinitely, we need a separate system, perhaps one built on formal logic, to verify this. These systems contain properties and rules which map to versions in the other, however, their separation is a feature, not a bug, to the chagrin of David Hilbert (Zach). By adding a naturalized epistemological dimension to this discussion on the relationship between math and logic, we can start to see the strengths and weakness of each for human knowledge and understanding. Although logic provides us with a degree of certainty, it necessarily comes at a cost. Mathematics, on the other hand, may allow us to understand our universe in greater detail, however, there will always be patterns or phenomena which will evade certainty or a complete understanding.

What about quantum mechanics? All I will say on the matter is this domain seems to involve probabilities, the space between 0 and 1. Could the strange phenomena seen at this physical level defy some aspect of logic we take for granted in physics? Are we dealing with a new formal system here? If math is like software and logic is like a kernel, what would the electricity in this metaphor be? I have more food for the parasite I guess.

Works Cited

Raatikainen, Panu, “Gödel’s Incompleteness Theorems”, The Stanford Encyclopedia of Philosophy (Spring 2021 Edition), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/spr2021/entries/goedel-incompleteness/>.

Zach, Richard, “Hilbert’s Program”, The Stanford Encyclopedia of Philosophy (Fall 2019 Edition), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/fall2019/entries/hilbert-program/>.

Metaphysics?

Still-life paintings from a new perspective: how does fruit ripen over time?
A depiction of a time lapse represented in 3 dimensions, from the perspective of 4 dimensions, on a mostly 2 dimensional plane.

Fruit of the Room, acrylic and embroidery floss, 2021
Fruit of the Room in my room
The fuzz on the thread reflecting blended or imprecise boundaries?

Anxiety in Creation

Thanks to my partner, I am now interested in learning to paint. I used to like to draw but painting has always been a daunting task. There are so many parameters to worry about, like colour, strokes, light, proportionality; I think it overwhelmed me. From my perspective, drawing is a little simpler; you have lines and some shading if you’re good. I think the thing that I found the most daunting, however, was picking subject matter. Why do people draw or paint the things they do? Most of the time, I couldn’t think of anything to paint, and would always worry about how the final product would turn out. My fearful immature mind would think something like “if mediocrity is the enemy, then it’s probably best that I stick to what I’m good at.” How lame is that? So, it’s time to tackle the fear of colour-matching and start by just making a mess. That’s what toddlers do with paint, so that’s what I shall do too, but a little less literally because my sensorimotor cortex has a better grip on how to move my hand. It’s not a lot better, but it’s something.

The idea for what to paint came to me, luckily, one day as I was thinking about time and reading about Cézanne. I was thinking about all the versions of still-life fruits and flowers that exist in the world, and then realized that these images were a snapshot of the object’s life, and that at one point, that one apple might have been green rather than red, for example. What if one were to paint all of the snapshots of the apple? In that moment, my mind produced a weird multi-coloured snake inside a tesseract, and it was at that point that I knew I had to try to externalize this image.

With my limited skills in visual representation, I knew I would need to take this slowly and plan every step of the image-creation project. I know I will make mistakes, but planning ahead and determining the steps I need to take beforehand helps to reduce the impact of the errors on the final product. The dimensions were the first thing to plan out: how is this going to fit within the canvas? Next, it was making sure the components of the foreground were properly set in relation to each other. Now that I am working on colour and detail, the real challenge begins.

To take a representation from the mind’s eye and depict it with high fidelity on a piece of paper or canvas is the hardest step. This is made explicit in Derrida’s Memoirs of the Blind, and when I read segments of this book earlier in the year, it reminded me of the art I used to make as a kid and the feelings I had back then. That feeling of anxiety as the brain and body work together to represent a trait or idea (Derrida 36) is quite familiar, and perhaps it was this book that subconsciously rekindled my interest in creating visual art.Since skill is built up as the hand translates what the mind sees into line segments, angles, and shades of colour, I knew I would need a set “training-wheels” to get me going. By appealing to my experiences of drawing, I knew my pictures looked best when I could copy an image in front of me, as the external image is more concrete, visually, than my internal depiction. Existing still-life images act as my guide-dog as I feel around in the dark for ways of bringing this image to life. I know the vase needs to reflect light, but how? Fortunately, a quick internet search provides plenty of examples, but I am still looking for the right image, one that looks as close as possible to the scene in my imagination. I need to copy existing visual elements in order to articulate the ones produced by my neurons.

The lesson? More practice, less fretting. The expectations I place on my “art” are nothing but my own ideals, and after I challenge these ideals, the pleasure comes back. What ideals am I referring to? Productivity and achievement for the sake of bolstering one’s prospects or status, along with other notions that tend to suck the delight out of our endeavours. My partner often reminds me to enjoy the process and think less about the painting as a final product. Focus on the verb, not the noun. I am doing this for myself, not for the blog, not for my career, and certainly not for money. It’s an exercise in phenomenology, nothing more. Will thoughts of hustle-culture sneak up on me when I’m vulnerable? Yes, but that’s why this is about my inner representations, including those that make me doubt myself.

Works Cited

Derrida, Jacques, and Musée du Louvre. Memoirs of the blind: The self-portrait and other ruins. Chicago: University of Chicago Press, 1993.

Qualia Revisited

I wrote a rhetorical post a while ago that attempts to motivate a new perspective on qualia and why we ought to consider it as something philosophically valuable. My appeals to art and cultural products aim to be persuasive by connecting qualia to everyday experiences, however, I think it still comes across as too abstract or unclear because the arguments are not well articulated. One of my supervisors has been instrumental for pushing me to abstract away from the science and evidence, and I now have a general idea of where I went wrong in my previous attempts to clarify my own perspective. Emphasis on ‘general’ because there is a lot of work to be done before I fully understand the difference between where I was and where I want to go.

Qualia, ultimately, are just concepts, which essentially boil down to information. This information is applied to the lived experience of one’s own sense data, as received from the environment, either internally in the form of bodily feelings, for example, or externally, as generated by features of the physical world. When we notice this sense data, which I consider similar to phenomenal experiences or Chalmers’ registrations (Chalmers 214), we often need a way to conceptually organize it. As a functional system, the brain receives incoming signals and processes them through various functions or streams, subsequently creating perceptions from sensations (Wolfe et al. 3). Our perceptions, however, are malleable based on information the individual has access to. This ranges from subtle, unconscious shifts in perspective to deliberate thought processes aimed at rethinking the situation at hand. As the body turns data into information (Computer Hope) through functional biological processes, qualia serve to facilitate the mind as the body’s owner or central processing unit by providing additional information which structures and curtails the process of perceiving.

Qualia as information can be passed from human to human as expressions of subjectivity as a means of connecting with others, in addition to making sense of the world. If qualia seem to be illusory or unreal, perhaps it’s because the significance of this information is lost as we try to make sense of what the mind is really doing from a scientific perspective. It probably doesn’t help that ‘information’ is abstract, conceptual, and invisible, as its inherent subtlety enables one to easily overlook or neglect its importance for structuring human thought and behaviour. Perhaps we take our theory of mind for granted and ignore subtle forms of communication, deeming the exchange of knowing glances as something less significant than a well-formed linguistic phrase. Though the information expressed through these channels may not demonstrate a high degree of fidelity to the thought as it exists in the mind of the communicator, our mere ability to communicate this way suggests that additional information already exists in the mind of the receiver, information which can contribute to shaping of the act of perceiving data about body language.

Through qualia, we are better equipped to separate the signal from the noise to determine its meaning, however, we are also reminded through the sharing of these experiences via various mediums that even in our private subjectivity, we are not alone. The “what-it-feels-like” inherent in qualia may be unique to a particular body, but similarities may also exist between individuals. The knowledge of these similarities supports our endeavours to make sense of our feelings and sensations, ultimately allowing us to accept ourselves and our experiences as they are. Although the act of sharing personal, subjective experiences serves a practical social purpose like fostering cooperation and empathy, qualia are useful for individuals as well. The exploration of our subjective selves, along with some act of expression, also allows us to feel more comfortable as we process the deluge of sense data as received by various sensory organs within the human body. Through qualia, we are reminded that the body we inhabit is not a boundary between our inner selves and the subjectivity of others, but a structure that creates and presents information based on our experiences of incoming sense data. This information may be elusive, but it still exists and is significant for structuring human consciousness.

Works Cited

Chalmers, David J. The Conscious Mind: In search of a fundamental theory. Oxford university press, 1996.

Wolfe, Jeremy M., et al. Sensation & perception. Sunderland, MA: Sinauer, 2015.

https://www.computerhope.com/issues/ch001629.htm

Horty’s Defaults with Priorities for Artificial Moral Agents

Can we build robots that act morally? Wallach and Allen’s book titled Moral Machines investigates a variety of approaches for creating artificial moral agents (AMAs) capable of making appropriate ethical decisions, one of which I find somewhat interesting. On page 34, they briefly mention “deontic logic” which is a version of modal logic that uses concepts of obligation and permission rather than necessity and possibility. This formal system is able derive conclusions about how one ought to act given certain conditions; for example, if one is permitted to perform some act α, then it follows that they are under no obligation to not do, or avoid doing, that act α. Problems arise, however, when agents are faced with conflicting obligations (McNamara). For example, if Bill sets an appointment for noon he is obligated to arrive at the appropriate time, and if Bill’s child were to suddenly have a medical emergency ten minutes prior, in that moment he would be faced with conflicting obligations. Though the right course of action may be fairly obvious in this case, the problem itself still requires some consideration before a decision can be reached. One way to approach this dilemma is to create a framework which is capable of overriding specific commitments if warranted by the situation. As such, John Horty’s Defaults with Priorities may be useful for developing AMAs as it enables the agent to adjust its behaviour based on contextual information.

Roughly speaking, a default rule can be considered similarly to a logical implication, where some antecedent A leads to some consequent B if A obtains. A fairly straightforward example of a default rule may suggest that if a robot detects an obstacle, it must retreat and reorient itself in an effort to avoid the obstruction. There may be cases, however, where this action is not ideal, suggesting the robot needs a way to dynamically switch behaviours based on the type of object it runs into. Horty’s approach suggests that by adding a defeating set with conflicting rules, the default implication can be essentially cancelled out and new conclusions can be derived about a scenario S (373). Unfortunately, the example Horty uses to demonstrate this move stipulates that Tweety bird is a penguin, and it seems the reason for this is merely to show how adding rules leads to the nullification of the default implication. I will attempt to capture the essence of Horty’s awkward example by replacing ‘Tweety’ with ‘Pingu’ as it saves the reader cognitive energy. Let’s suppose then that we can program a robot to conclude that, by default, birds fly (B→F). If the robot also knew that penguins are birds which do not fly (P→B ˄ P→¬F), it would be able to determine that Pingu is a bird that does not fly based on the defeating set. According to Horty, this process can be considered similarly to acts of justification where individuals provide reasons for their beliefs, an idea I thought would be pertinent for AMAs. Operational constraints aside, systems could provide log files detailing the rules and information used when making decisions surrounding some situation S. Moreover, rather than hard-coding rules and information, machine learning may be able to provide the algorithm with the inferences it needs to respond appropriately to environmental stimuli. Using simpler examples than categories of birds and their attributes, it seems feasible that we could test this approach to determine whether it may be useful for building AMAs one day.

Now, I have a feeling that this approach is neither special nor unique within logic and computer science more generally, but for some reason the thought of framing robot actions from the perspective of deontic logic seems like it might be useful somehow. Maybe it’s due to the way deontic terminology is applied to modal logic, acting like an interface between moral theory and computer code. I just found the connection to be thought-provoking, and after reading Horty’s paper, began wondering whether approaches like these may be useful for developing systems that are capable of justifying their actions by listing the reasons used within the decision-making process.

Works Cited

Horty, John. “Defaults with priorities.” Journal of Philosophical Logic 36.4 (2007): 367-413.

McNamara, Paul, “Deontic Logic”, The Stanford Encyclopedia of Philosophy (Summer 2019 Edition), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/sum2019/entries/logic-deontic/>.

Rescuing Qualia

In Quining Qualia, Dennett states “conscious experience has no properties that are special in any of the ways qualia have been supposed to be special” where qualia are considered “special properties, in some hard-to-define way.” His appeals to intuition aim to defend these ideas, however, the examples he provides may fail to convince the reader as objections can be drawn based on an understanding of nervous system functioning and through examining human behaviour. Here, I’m interested in providing an explanation for qualia which does not rely on some intrinsic property of the mind, but a product of culture which influences, and is influenced by, individual humans and their subjective experiences.

To be facetious for a moment, if qualia did not exist, how could one explain why it is that humans feel compelled to spend energy, time, and money on creating, sharing, and experiencing art? Dennett might appeal to the nature of subjective experiences or perhaps to our motivation for seeking pleasure, however there is much more to subjective experiences than one’s feelings or mental representations evoked by some stimulus. Knowledge surrounding a particular stimulus may shape the way it feels or appears from a first-person perspective; for example, mistaking a benign object for a threat of some kind. A coat and hat hanging on a wall hook inside a dark room may be mistaken for a person, perhaps causing one to feel threatened or startled by the apparent intruder, only to discover the truth after turning on the lights. The subjective experience prompted by the sight of the coat and hat is different than if the illusion had indeed been an unexpected guest, primarily due to the relief one is likely to feel at discovering the reality of the situation. In the case of experiencing art, subjective experiences may change over time or with repeated exposure, but our minds are also influenced by the minds of others. The ability to communicate our feelings to others introduces additional perspectives surrounding a particular stimuli, potentially altering one’s own perception and subsequent experiences. These shared ideas or experiences are then represented through cultural artifacts, practices, or beliefs, and aim to depict associations between sensations and perceptions. In this way, qualia are a features of the natural world insofar as they are a result of evolution and human intelligence, becoming “real” as they shape the ways individuals experience and interact with various stimuli.

Not all subjective experiences become qualia though, as some perceptions are more difficult to articulate than others. How to articulate one’s visual experiences of red? It may remind you of something, but it doesn’t necessarily feel like much to merely look at a red object. I can infer that you probably see the colour red like I do when I consider your behaviour around colourful objects. If someone were to indicate their inability to distinguish colours in the same way that I do, I might perform a quick test to verify the experiential discrepancy. Regardless of individual perception however, there is still “something it is like” to see the colour red as most of us do and are able to create representations appealing to this visual quality. Articulating the nature of ‘red’ on its own is rather tough because its qualities aren’t a composite of other visual qualities per say, at least not in the way that ‘orange’ is. From this perspective, qualia emerge through the act of communicating our experiences to others and through identifying the various phenomenological aspects they contain. Qualia feel real to humans because we use them to engage with artistic practices, almost like Dawkins’ memes but saturated in visceral associations to various sensations and perceptions.

If qualia aren’t real, then why does a collection of piano chords remind Debussy and other listeners of clouds? Language enables us to describe our subjective experiences using similes, where one environmental feature reminds us of something else. These associations are likely to follow certain regularities given the laws and constraints of our universe and our physiology, resulting in a similarities between subjective and shared experiences. I doubt any listener will associate Debussy’s pieces with the eruption of Krakatoa, but it seems reasonable to assume some individuals may think of water rather than the sky when listening to Nuages. Thus, it could be suggested that stimuli may evoke a potential set of qualia that humans may refer to when considering their own subjective experiences. Exactly which qualia are included and excluded is roughly determined by how a stimulus affects individuals as a result of their physiological functioning.

Qualia are products of human culture, not biology. The evolution of primates along with their tendency to socialize and enjoy participating in shared activities gave rise to a shared experiences and various ways to depict or describe them. Human cultures create classifications, distinctions, and ontological categories as way to explain natural phenomena and to share knowledge. This collective idea on how our subjective experiences appear to others facilitates bonding as humans learn they are able to relate to the private experiences of others.

Works Cited

Dennett, Daniel C. “Quining qualia.” Consciousness in modern science. Oxford University Press, 1988.

Coin Toss in an Alternate Universe

I came across this reddit post a couple years ago and thought it was quite funny. I can see Randall Munroe of xkcd comics drawing up a really good depiction of this imaginary phenomenon too.

“According to the multi-world theory, there is a universe where every flipped coin has landed on heads, completely by chance. Imagine rooms full of machines, just flipping coins with scientists baffled as to why it happens”

According to OP in the comments of the reddit post, this world “would have identical physics, [where] this just happens by chance” and “physics aren’t different in this universe, the incident with coins only landing on heads is pure probability, not a law.” I like to imagine that there would be individuals dedicating their entire research careers to this phenomenon, maybe pulling out their hair as no solid evidence is able to suggest why this happens.

If you, dear reader, felt inspired to fulfill my dream of depicting this scenario in an illustration of this scene, I would excitedly add it to the bottom of this post with full credit to you! Wilfred is tired and would like to retire; in this universe he studied the coin toss phenomenon in his free time.

Works Cited

Philosophy of Humour

When learning about theatre back in high school, my drama teacher mentioned comedy arises from two basic principles:
1. It’s funny because it’s not me
2. It’s funny because it’s true

This has probably been said at one point, but I would like to offer a third principle for consideration:
3. It’s funny because it’s me

Why is this different than the second principle? While there may be some overlap, we often think of ourselves as separate from typical functions which determine truth values. Sure, we are able to run through a list of propositions about ourselves and can evaluate them like any other, but there is something more at play here.

Sometimes our feelings hint at things we aren’t ready to confront. Are you able to look yourself in the mirror and say “it is true that I am ___?” Maybe for certain characteristics this is easy, but others may be more difficult to admit. Our laughter, however, suggests we have understood some property about the world, and may be able to relate it to other things, perhaps to ourselves and others, in ways that are less explicit or unarticulated. We may feel amused for several reasons, one of which may include a certain level of meta-analysis. Perhaps deep down we are aware of one character trait we are not proud of but are able to recognize in a moment of leisure. This openness to information may allow ourselves to acknowledge aspects of our life or personality which we typically tend to hide or fix. Humour, especially reflexive humour, which turns the examination process back to oneself, can be therapeutic insofar as it allows us to understand ourselves without feeling the pressure to do anything about it. The first step to change is the recognition that something exists or must be better understood, and in this way, humour cracks the door to look at aspects of ourselves we wish to turn away from. The pleasure which accompanies laughter and humour allows us to relax and see through feelings of embarrassment or defensiveness.

Internet memes provide us with a way to laugh at ourselves and share our vulnerabilities with others. They serve as a reminder that we are human with troubles, flaws, and fears, but they also remind us that we are not alone. It’s easy to get wrapped up in our work, goals, and expectations as we compare ourselves with others and their accomplishments. As much as these aspects of life are important to some degree, we must always remember that the image others present to us is just a segment of their reality. Humour, especially when shared with others, reminds us to breathe; life is more than a to-do list of tasks.

There is a rich body of philosophical literature on humour that I have not yet had the pleasure of reading, but one day I will. As much as I would like to work on adding more to my Philosophy of Memes page, it’s a slow process because I should be focusing on school work! Until then, these considerations will be relatively uninformed and personal, and I look forward to rereading and laughing at my ramblings in 20 years from now.

Why Science Needs Philosophy

My peers within the department often joke about life after university, considering the whole world seems to scoff at those interested in pursuing arts and humanities (A&H) degrees. This opinion piece by Laplace, however, is an important reminder of the value of our discipline, regardless of how much money we end up making in the future. As institutional funding is reallocated to support students pursuing more profitable degrees like computer science and engineering, A&H departments are likely to suffer, unable to hire new faculty and limiting course selection for example. Unless philosophers can market their skills to assist with projects from a variety of sectors, I don’t see how society will continue to support our endeavours, perspectives and concerns. Although notions of “anti-elitism” seem to continue to grow in the United States, perhaps Canada will challenge my pessimistic attitudes on this subject and find innovative ways to support their A&H graduates, but we will see. This suggests philosophers may need to do their own advocacy demonstrating the financial value of creativity and scepticism, especially within business, science, and technology. Consider this entry as my early attempts at convincing you, dear reader, that philosophy is much more than writing about central figures such as Kant, Aristotle, or Frege.

Although Laplane discusses many important points throughout, the end of the article is quite interesting as it suggests ways to foster the relationship between science and philosophy. Now, I’m not quite sure who said this to me, but they presented the idea that philosophy and science are able to discuss the same topic in different ways. While science may prefer ‘what’ questions, philosophy tends to ask ‘why’ and perhaps even ‘how’ concepts, principles, or processes emerge. Though this generalization may oversimplify the relationship between the two, I merely wanted to point out their approximate differences. Laplane herself states “…we see philosophy and science as located on a continuum.” (3950) which suggests both an overlap and a distinction in the questions each discipline asks. It is important to remember the common ground, in addition to the diversity in perspectives, between science and philosophy as we consider new ways to unite these two fields of inquiry.

While I agree with all six recommendations on page 3951, the fourth and fifth stood out to me as the most important especially when it comes to developing this program in the future. The marriage of science and philosophy can only be as good as its thinkers, where education serves a central role for this relationship to be harmonious and fruitful. From primary school to post secondary, it will become increasingly important to teach both arts and sciences of various types to foster the integration of the two. I say ‘arts’ rather than ‘philosophy’ because developing a love for the arts may inspire individuals in ways philosophy is unable. Artistic expression, regardless of medium, allows one to improve their sense of self, and when combined with educational goals, is likely to facilitate personal and professional growth more effectively than either alone. Whether it is sculpting, poetry, or dance, artistic expression provides mechanisms for new approaches within the sciences as one remains in touch with their creative side. Although it might be difficult to understand how theatre may inspire work in civil engineering, the human brain is quite powerful in its abilities to “fill in the blanks” and synthesize concepts, if the opportunity arises. Most exciting of all is how access to information via the internet and online relationships can further assist individuals in their efforts.

Returning to philosophy though, Laplane makes an important point about why philosophical inquiry is so appropriate for science. On page 3950 after the excerpt mentioned above, she states:

“Philosophy and science share the tools of logic, conceptual analysis, and rigorous argumentation. Yet philosophers can operate these tools with degrees of thoroughness, freedom, and theoretical abstraction that practicing researchers often cannot afford in their daily activities.”

It is exactly this freedom which inspired me to move away from studying psychology to studying philosophy of mind. Of course, too much of a good thing can lead one astray, which is why empirical evidence and the methodologies which produce it must never be overlooked by philosophers. The ability to defer to experts is a powerful bidirectional tool which carries so much potential for the future, and maybe one day those interested in A&H subjects will find their niche within capitalistic economies.

Works Cited

Laplane, Lucie, et al. “Opinion: Why science needs philosophy.” Proceedings of the National Academy of Sciences 116.10 (2019): 3948-3952.