Category: Philosophy

Artifacts

What does it mean to call something an example of “artificial intelligence” (AI)? There are a few different ways to approach this question, one of which includes examining the field to identify an overarching definition or set of themes. Another involves considering the meanings of the words ‘artificial’ and ‘intelligence’, and arguably, doing so enables the expansion of this domain to include new approaches to AI. Ultimately, however, even if these agents one day exhibit sophisticated or intelligent behaviours, they nonetheless continue to exist as artifacts, or objects of creation.

The term artificial intelligence was conceived by computer scientist John McCarthy in 1958, and the purported reason he chose the term was to distinguish it from other domains of study.1 In particular, the field of cybernetics which involves analog or non-digital forms of information processing, and automata theory as a branch of mathematics which studies self-propelling operations.2 Since then, the term ‘artificial intelligence’ has been met with criticism, with some questioning whether it is an appropriate term for the domain. Specifically, Arthur Samuel was not in favour of its connotations, according to computer scientist Pamela McCorduck in her publication on the history of AI.3 She quotes Samuel as stating “The word artificial makes you think there’s something kind of phony about this, or else it sounds like it’s all artificial and there’s nothing real about this work at all.”4

Given the physical distinctions between computers and brains, it is clear that Samuel’s concerns are reasonable, as the “intelligence” exhibited by a computer is simply a mathematical model of biological intelligence. Biological systems, according to Robert Rosen, are anticipatory and thus capable of predicting changes in the environment, enabling individuals to tailor their behaviours to meet the demands of foreseeable outcomes.5 Because biological organisms depend on specific conditions for furthering chances of survival, they evolved ways to detect these changes in the environment and respond accordingly. As species evolved over time, their abilities to detect, process, and respond to information expanded as well, giving rise to intelligence as the capacity to respond appropriately to demanding or unfamiliar situations.6 Though we can simulate intelligence in machines, the use of the word ‘intelligence’ is metaphorical rather than literal. Thus, behaviours exhibit by computers is not real or literal ‘intelligence’ because it arises from an artifact rather than from biological outcomes.

An artifact is defined by Merriam-Webster as an object showing human workmanship or modification, as distinguished from objects found in nature.7 Etymologically, the root of ‘artificial’ is the Latin term artificialis or an object of art, where artificium refers to a work of craft or skill and artifex denotes a craftsman or artist.8 In this context, ‘art’ implies a general sense of creation and applicable to a range of activities including performances as well as material objects. The property of significance is its dependence on human action or intervention: “artifacts are objects intentionally made to serve a given purpose.”9 This is in contrast to unmodified objects found in nature, a distinction first identified by Aristotle in Metaphysics, Nicomachean Ethics, and Physics.10 To be an artifact, the object must satisfy three conditions: it is produced by a mind, involves the modification of materials, and is produced for a purpose. To be an artifact, an object or entity must meet all three criteria.

The first condition states the object must have been created by a mind, and scientific evidence suggests both humans and animals create artifacts.11 For example, beaver dams are considered artifacts because they block rivers to calm the water which creates ideal conditions for a building a lodge.12 Moreover, evidence suggests several early hominid species carved handaxes which serve social purposes as well as practical ones.13 By chipping away at a stone, individuals shape an edge into a blade which can be used for many purposes, including hunting and food preparation.14 Additionally, researchers have suggested that these handaxes may also have played a role in sexual selection, where a symmetrically-shaped handaxe demonstrating careful workmanship indicates a degree of physical or mental fitness.15 Thus, artifacts are important for animals as well as people, indicating the sophisticated abilities involved in the creation of artifacts is not unique to humans.

Computers and robots are also artifacts given that they are highly manufactured, functionally complex, and created for a specific purpose. Any machine or artifact which exhibits complex behaviour may appear to act intelligently, however, the use of ‘intelligent’ is necessarily metaphorical given the distinction between artifacts and living beings. There may one day exists lifelike machines which behave like humans, however, any claims surrounding literal intelligence must demonstrate how and why that is; the burden of proof is theirs to produce. An argument for how a man-made object sufficiently models biological processes is required, and even then, remains a simulation of real systems.

If the growing consensus in cognitive science indicates individuals and their minds are products of interactions between bodily processes, environmental factors, and sociocultural influences, then we should to adjust our approach to AI in response. For robots intending to replicate human physiology, a good first step would be to exchange neural networks made from software for ones built from electrical circuits. The Haikonen Associative Neuron offers a solution to this suggestion,16 and when coupled with the Haikonen Cognitive Architecture, is capable of generating the required physiologicalprocesses for learning about the environment.17 Several videos uploaded to YouTube demonstrate a working prototype of a robot built on these principles, where XCR-1 is able to learn associations between stimuli in its environment, similarly to humans and animals.18 Not only is it a better model of animal physiology than robots relying on computer software, the robot is capable of performing a range of cognitive tasks, including inner speech,19 inner imagery,20 and recognizing itself in a mirror.21

So, it seems that some of Arthur Samuel’s fears have been realized, considering machines merely simulate behaviours and processes identifiable in humans and animals. Moreover, the use of ‘intelligence’ is metaphorical at best, as only biological organisms can display true intelligence. If an aspect of Samuel’s concerns related to securing funding within his niche field of study, and its potential to fall out of fashion, he has no reason to worry. Unfortunately, Samuel passed away in 199022 so he would not have had a chance to see the monstrosity that AI has since become.

Even if these new machines were to become capable of sophisticated behaviours, they will always exist as artifacts, objects of human creation and designed for a specific purpose. The etymological root of the word ‘artificial’ alone provides sufficient grounds for classifying these robots and AIs as objects, however, as they continue to improve, this might become difficult to remember at times. To avoid being deceived by these “phony” behaviours, it will become increasingly important to understand what these intelligent machines are capable of and what they are not.

neuralblender.com


Works Cited

1 Nils J. Nilsson, The Quest for Artificial Intelligence (Cambridge: Cambridge University Press, 2013), 53, https://doi.org/10.1017/CBO9780511819346.

2 Nilsson, 53.

3 Nilsson, 53.

4 Pamela McCorduck, Machines Who Think: A Personal Inquiry Into the History and Prospects of Artificial Intelligence, [2nd ed.] (Natick, Massachusetts: AK Peters, 2004), 97; Nilsson, The Quest for Artificial Intelligence, 53.

5 Robert Rosen, Anticipatory Systems: Philosophical, Mathematical, and Methodological Foundations, 2nd ed., IFSR International Series on Systems Science and Engineering, 1 (New York: Springer, 2012), 7.

6 ‘Intelligence’, in Merriam-Webster.Com Dictionary (Merriam-Webster), accessed 5 March 2024, https://www.merriam-webster.com/dictionary/intelligence.

7 ‘Artifact’, in Merriam-Webster.Com Dictionary (Merriam-Webster), accessed 17 October 2023, https://www.merriam-webster.com/dictionary/artifact.

8 Douglas Harper, ‘Etymology of Artificial’, in Online Etymology Dictionary, accessed 14 October 2023, https://www.etymonline.com/word/artificial; ‘Artifact’.

9 Lynne Rudder Baker, ‘The Ontology of Artifacts’, Philosophical Explorations 7, no. 2 (1 June 2004): 99, https://doi.org/10.1080/13869790410001694462.

10 Beth Preston, ‘Artifact’, in The Stanford Encyclopedia of Philosophy, ed. Edward N. Zalta and Uri Nodelman, Winter 2022 (Metaphysics Research Lab, Stanford University, 2022), https://plato.stanford.edu/archives/win2022/entries/artifact/.

11 James L. Gould, ‘Animal Artifacts’, in Creations of the Mind: Theories of Artifacts and Their Representation, ed. Eric Margolis and Stephen Laurence (Oxford, UK: Oxford University Press, 2007), 249.

12 Gould, 262.

13 Steven Mithen, ‘Creations of Pre-Modern Human Minds: Stone Tool Manufacture and Use by Homo Habilis, Heidelbergensis, and Neanderthalensis’, in Creations of the Mind: Theories of Artifacts and Their Representation, ed. Eric Margolis and Stephen Laurence (Oxford, UK: Oxford University Press, 2007), 298.

14 Mithen, 299.

15 Mithen, 300–301.

16 Pentti O Haikonen, Robot Brains: Circuits and Systems for Conscious Machines (John Wiley & Sons, 2007), 19.

17 Pentti O Haikonen, Consciousness and Robot Sentience, 2nd ed., vol. 04, Series on Machine Consciousness (WORLD SCIENTIFIC, 2019), 167, https://doi.org/10.1142/11404.

18 ‘Pentti Haikonen’, YouTube, accessed 6 March 2024, https://www.youtube.com/@PenHaiko.

19 Haikonen, Consciousness and Robot Sentience, 182.

20 Haikonen, 179.

21 Robot Self-Consciousness. XCR-1 Passes the Mirror Test, 2020, https://www.youtube.com/watch?v= WE9QsQqsAdo.

22 John McCarthy and Edward A. Feigenbaum, ‘In Memoriam: Arthur Samuel: Pioneer in Machine Learning’, AI Magazine 11, no. 3 (15 September 1990): 10, https://doi.org/10.1609/aimag.v11i3.840.

Chaos in the System

As an argument against iCub’s ability to understand humans, I wanted to appeal to the work of Robert Rosen because I think it makes for a compelling argument about AI generally. To accomplish this, however, my project would start to go in a new direction which renders it less cohesive overall. Instead, the Rosen discussion is better served as a stand alone project because there is a lot of explaining yet to do, and maybe some objections that need discussing as well. This will need to wait but I can at least upload the draft for context on the previous post. There are a few corrections I still need to make but once it’s done, I will update this entry.

Instead, I will argue that the iCub is not the right system for social robots because its approach to modelling emotion is unlike the expression of emotions in humans. As a result, it cannot experience nor demonstrate empathy in virtue of the way it is built. The cognitive architecture used by iCub can recognize emotional cues in humans, however, this information is not experienced by the machine. Affective states in humans are bodily and contextual, but in iCub, they are represented by computer code to be used by the central processing unit. This is the general idea but I’m still working out the details.

That said, there is something interesting in Rosen’s idea about the connection between Gödel’s Incompleteness Theorem and the incompleteness between syntax and semantics. In particular, what he identifies is the problems generated from self-reference which leads the system to produce an inconsistency given its rule structure. The formal representation of an external referent, as an observable of a natural system, contains only the variables relevant for the referent within the formal system. Self-reference requires placing a variable within a wider scope, one which must be provided in the form of a natural system. Therefore, an indefinite collection of formal systems is required to capture a natural phenomenon. Sometimes a small collection is sufficient, while other times, systems are so complex that a collection of formal systems is insufficient for fully accounting for the natural phenomenon. Depending on the operations to be performed on the referent, it may break the system or lead to erroneous results. The chatbot says something weird or inappropriate.

In December, I presented this argument at a student conference and made a slideshow for it. Just a note: on the second slide I list the titles of my chapters, and because I won’t be pursuing the Rosen direction, the title of Chapter 4 will likely change. Anyway, the reading and writing on Rosen has taken me on a slight detour but a worthwhile one. Now, I need to begin research on emotions and embodiment, which is also interesting and will be useful for future projects as well. The light at the end of the tunnel has dimmed a bit but it’s still there, and my eyes have adjusted to the darkness so it’s fine.

This shift in directions makes me think about the relationship between chaos and order, and systems that swing between various states of orderliness. Without motion there would be rest and stagnation, so as much as change can be challenging, it can bring new opportunities. There is a duality inherent in everything, as listed as one of 7 Hermetic Principles. If an orderly, open system is met with factors which disrupts or disorganizes functioning, the system must undergo some degree of reorganization or compensation. The explanatory powers of the 7 Principles are not meant to relate to the external world in the way physics does, but relate to one’s perspective of events in the outside world. If one can shift their perspective accordingly, they operate as axioms for sense-making, their reality pertaining more to epistemology than ontology. We can be sceptical as to how these Principles manifest in the physical universe while feeling their reality in our lived experience of the world. They are to be studied from within rather than from without, and are thus more aligned with phenomenology than the sciences.

Metaphorically speaking, chaos injected into any well-ordered system has the potential to severely damage or disrupt it, requiring efforts to rebuild and reorganize to compensate for the effects of change. The outcome of this rebuilding process can be further degradation and maybe even collapse, however, it can lead to growth and better outcomes than if the shift had not occurred. It all depends on the system in question and the factors which impacted it, and probably the specific context in which the situation occurred, but it might depend on the system in question. Anyway, we substitute the idea of ‘chaos’ for ‘energy’ as movement or potential, thus establishing a connection to ‘light’ as a type of energy. Metaphorically, ‘light’ is also associated with knowledge and beneficence, so if the source of chaos is intentional and well-meaning, favourable changes can occur and thus a “light bringer” or “morning star” can be associated with positive connotations. Disrupting a well-ordered system without knowledge or a plan or good reasons is more likely to lead to further disorder and dysfunction, leading to negative or unfavourable outcomes. In this way, Lucifer can be associated with evil or descent.

This kind of exercise can help us make sense of our experiences and understanding, but they also give us into a window into the past and how other people may think. Myth and legend from cultures all over the world portray knowledge in metaphors which inspire those who come upon them for generations since. The metaphysics are not important, it’s the epistemology from the metaphors which can explain aspects of how the world works or why people think certain things or act in certain ways. It exists as poetry which needs interpreting and there is room for multiple perspectives, so not everyone appreciates it which is understandable. It is still valuable work to be done by someone though, and the more people the better.

Rothschild Canticles p. 64r (c. 1300)

★★★

Artificial Neurons

Progress on my dissertation is going well, I can see the light at the end of the tunnel. I ended up appealing to Robert Rosen’s distinction between natural and formal systems, as well as his appeal to Kurt Gödel’s Incompleteness Theorem, for my argument about why computerized robots will ultimately fail to generate social competencies.

Rosen presents his own reformulation of the McCulloch Pitts neuron in Anticipatory Systems, and I thought it might be helpful to include it in my dissertation to further illustrate the differences between physical neurons and formal neurons. In it, I only use an image that I created from this document but I thought it might be a good idea to upload my LaTeX document here to make it clear that I have not merely copied the image from Rosen’s work. Yes, the formatting isn’t great but I’m claiming that it’s a feature and not a bug, as it demonstrates that I learned [only] the fundamentals of LaTeX for my project.

Works Cited

Rosen, Robert. Anticipatory Systems: Philosophical, Mathematical, and Methodological Foundations. 2nd ed., Springer, 2012.

Civilian Duty

For a while I thought I didn’t like fiction, despite reading plenty of it voluntarily as a kid. I prefer to read non-fiction most of the time, unless I’m tired and don’t feel like focusing. In comparison, fiction feels like watching a movie. This isn’t meant as an insult, as there is a great deal of artistry and technical skill that goes into making a movie. Fiction can transport its readers to different worlds and capture the imagination, the pleasant escapism quite literally diverting.

Speaking of which, when I saw the movie Starship Troopers several years ago, I was pleasantly surprised by the satire and thought it was a lot of fun. I learned it was originally a book published in 1959 and made a note to check it out sometime.

Earlier this year, while going through boxes of books looking for something, I stumbled upon it; it belongs to my partner and he said it was good albeit different than the movie. This is true but it’s still an interesting read. Set in the future, the protagonist’s teacher for History and Moral Philosophy goes on a diatribe about the previous civilization: ours.

From chapter 8 of Starship Troopers by Robert Heinlein:

“They had no scientific theory of morals and they tried to live by it… by their theory was wrong–half of it fuzzy-headed wishful thinking, half of it rationalized charlatanry. The more earnest they were, the farther it led them astray. You see, they assumed that Man has a moral instinct.”

“Sir? I thought–But he does! I have.”

“No, my dear, you have a cultivated conscience, a most carefully trained one. Man has no moral instinct. He is not born with moral sense. You are not born with it, I was not–and a puppy has none. We acquire moral sense, when we do, through training, experience, and hard sweat of the mind. These unfortunate juvenile criminals were born with none, even as you and I, and they had no chance to acquire any; their experiences did not permit. What is ‘moral sense’? It is an elaboration of the instinct to survive. The instinct to survive is human nature itself, and every aspect of our personalities derives from it. Anything that conflicts with the survival instinct acts sooner or later to eliminate the individual and thereby fails to show up in the future generations. This truth is mathematically demonstrable, everywhere verifiable; it is the single eternal imperative controlling everything we do.

“But the instinct to survive,” he had gone on, “can be cultivated into motivations more subtle and much more complex than the blind, brute urge of the individual to stay alive. Young lady, what you miscalled your ‘moral instinct’ was the instilling in you by your elders of the truth of your own personal survival. Survival of your family, for example. Of your children, when you have them. Of your nation, if you struggle that high up the scale. And so on up. A scientifically verifiable theory of morals must be rooted in the individual’s instinct to survive–and nowhere else!– and must correctly describe the hierarchy of survival, note the motivations at each level, and resolve all conflicts.

… [the teacher is still speaking but it’s not necessary to add here]

“The basis of all morality is duty, a concept with the same relation to group that self-interest has to individual. Nobody preached duty to these kids [juvenile delinquents] in a way they could understand–that is, with a spanking. But the society they were in told them endlessly about their ‘rights’.

“The results should have been predictable, since a human being has no natural rights of any nature.

Mr. Dubois had paused. Somebody took the bait. “Sir? How about ‘life, liberty, and the pursuit of happiness’?”

“Ah, yes, the ‘unalienable rights’. Each year someone quotes that magnificent poetry. …”

… [the teacher gives examples like a man drowning in the Pacific; “The ocean will not hearken to his cries.” Nature doesn’t care]

“And that was the soft spot which destroyed what was in many ways an admirable culture. The junior hoodlums who roamed their streets were symptoms of a greater sickness; their citizens (all of them counted as such) glorified their mythology of ‘rights’… and lost track of their duties. No nation, so constituted, can endure.”

(Heinlein 123–26)

It seems we indeed lack a scientific theory of morals, and what we have instead is a form of utilitarianism which is calculated by appealing to relativistic and epicurean attitudes toward life. This moral code, or patchwork quilt, is not a framework and as such, does not produce social virtues. Without them, societies as dynamic systems of human interaction, gently decays. We become a collection of sick, atomized animals guided by an economic shepherd until we die.

There is no endogenous moral instinct, instead it’s learned and reinforced through the people one is surrounded by. The moral instinct is duty generated from a number of motivations, all derived from our instinct to survive. We work together because we benefit from cooperation. The truth is indeed mathematically demonstrable, everywhere verifiable. Truths, or fragments of them, are detected by various religions, cultures, and peoples over human history. Many are covered by metaphor, requiring an alternate reading or perspective to identify and understand the message.

Later on in the book, a different teacher states:

“Service men are not brighter than civilians. In many cases, civilians are much more intelligent. That was the sliver of justification underlying the attempted coup d’état just before the Treaty of New Delhi, the so-called ‘Revolt of the Scientists’: let the intelligent elite run things and you’ll have a utopia. It fell flat on its foolish face of course. Because the pursuit of science, despite its social benefits, is itself not a social virtue; its practitioners can be men so self-centered as to be lacking in social responsibility.”

(190)

The analysis continues on page 193:

“But this universe consists of paired dualities. What is the converse of authority? Mr. Rico.”

… “Responsibility, sir.”

… “To permit irresponsible authority is to sow disaster; to hold a man responsible for anything he does not control is to behave with blind idiocy. The unlimited democracies were unstable because their citizens were not responsible for the fashion in which they exerted their sovereign authority… other than through the tragic logic of history. No attempt was made to determine whether a voter was socially responsible to the extent of his literally unlimited authority.”

Social virtue is not the same as social benefit. What kinds of social virtues do we have, and which moral framework are they appealing to? Do we have good reasons, empirical reasons perhaps, for adopting this framework? Probably not.

We are not responsible to each other, there is no duty to each other in our current system. We are isolated and placated by the destruction of standards, left alone to do what we please and able to shut out those who disagree with us. The problem is this lack of responsibility and is thus the real cause of depression, as no reward can be found from inaction. Ultimately, the challenges with their pain and suffering is required for growth, allowing us to appreciate the small things in life. Hardship is not meant to be avoided, it’s meant to be addressed head-on because in doing so, wisdom can be acquired. A moral code requiring a duty to one’s fellow man lifts everyone up through trial-and-error, and those who cannot pull themselves up must be lifted up by others. Of course, a duty to others must be balanced with a duty to oneself.

I wonder if the movie is different from the book because the book paints us in a rather negative light. “We can’t show that to our paying audience, now, can we?” Instead, the future is depicted as somewhat absurd with a goofy militaristic society. While the book does depict a strict legal system, this is due to the belief that a moral sense is taught and reinforced since it is not an instinct. Without striving for something greater, our animalistic traits can flourish and take over the mind. Because this often leads to self-serving behaviours and apathy, this degradation is not ideal for human societies. We are social beings that require a particular set of principles to live and act well. It’s not easy but it is worth it.


Satellite Science Fiction cover by Alex Schomburg (circa 1958)

Works Cited

Heinlein, Robert A. Starship Troopers. Penguin Publishing House, 2006, https://www.penguinrandomhouse.ca/books/298329/starship-troopers-by-robert-a-heinlein/9780441014101.

Moving On Up

Given my last post, I should probably explain myself. I still don’t know what I’m doing but maybe simple acceptance isn’t all it’s cracked up to be. We have the power to change our circumstances, so why not give it a go? A saying I often think about is “ships aren’t built to sit in harbours” and while one can avoid risk this way, you also don’t get to see far off lands either.

Time to rebuild. What do I know? I know what I feel; phenomenology is a good place to start. I still stand behind everything I stated regarding qualia. There may be aspects to my hypothesis that might change or there might be something I’m missing, however, to state that the entire idea is wrong is a hastily generated conclusion.

There is probably more to consciousness than can be captured by our current scientific understanding, however, one must tread very carefully when moving in this direction. Figuring out what this involves and how it works is my new pet project and hopefully I can make some headway. I’m not in a rush though.

Here’s the big reveal: I read the CIA document titled Analysis and Assessment of Gateway Process in addition to Itzhak Bentov’s book Stalking the Wild Pendulum. Luckily for us, Thobey Campion has done some very important investigative journalism regarding the missing page 25 from the CIA document; thank you very much for your work Thobey. I strongly encourage you to read the Vice article about it while it’s still available. I have a hunch that this article won’t be around for a long time but hopefully I’m wrong.

I want someone to explain the physics to me like I’m 5 and stick around for a lengthy Q&A session. I want to know how this works in a way that connects to our current understanding of physics. Bentov’s book seems to get about halfway there but doesn’t explain all the details necessary to generate a full explanation of the phenomenon. If you know of anyone who has written about this, please email me because I’m very interested in exploring this further.

Page 25 is truly the most important page in the CIA document because it reiterates a certain truth that serves as the bedrock for creating the Philosopher’s Stone: self-awareness. Unwavering, unfiltered, unapologetic self-awareness.

“It was axiomatic to the mystic philosophers of old that the first step in personal maturity could be expressed in the aphorism: “Know thyself.” To them, the education of a man undertook, as its primary step, achievement of an introverted focus so that he learned what was within himself before attempting to approach the outside world. They rightly assumed that he could not effectively evaluate and cope with the world until he fully understood his personal psychological imbalance. The insights being provided by Twentieth Century psychology in this context through the use of various kinds of personality testing seem to be a revalidation of this ancient intuition. But no personality test, or series of tests, will ever replace the depth and fullness of the perception of self which can be achieved when the mind alters its state of consciousness sufficiently to perceive the very hologram of itself which it has projected into the universe in its proper context as part of the universal hologram in a totally holistic and intuitional way. This would seem to be one of the real promise of the Gateway Experience from the standpoint of its ability to provide a portal through which, based on months if not years of practice, the individual may pass in his search to find self, personal effectuality, and truth in the larger sense.”

The appeal to holograms here might rub some the wrong way, however, I think this has something to do with Kantian metaphysics. Specifically, that everything is just sense data, and while we don’t necessarily need to go full Berkeley, we must always remember that our experiences are simply appearances, not objective data. Where does certainty come from? The synthesis of a first-person perspective and third-person perspective. Do not simply defer to what everyone else says but do not ignore it either.

This I know. As do many others, many (most?) of which have lived before I or Bentov or anyone else around today. What I might add, though, is that it always takes two to tango. Men and women together as fully-developed agents even when it generates a conflict. When done in good faith, the outcome is so much more, so much greater, than either one alone.

Perfection as Asymptotic

Graphing the equation y=1/x produces some weird behaviour as x approaches 0; the limit is ∞ since it is impossible to divide by 0. The invisible line that seems to appear at x = 0 is called an asymptote, and therefore, anything that is asymptotic approaches “a given value as an expression containing a variable [which] tends towards infinity” (‘Definition of Asymptotic | dictionary.com’). Math jargon aside, the idea is that as the value of x becomes increasingly small, its corresponding y value will increase exponentially as the function seemingly “avoids” x = 0, where x can be either a negative and positive number.

This is what I imagine is taking place when reading about Kant’s idea of perfection in The Metaphysics of Morals. In part one of Doctrine of the Elements of Ethics, specifically Book II Section II §22, Kant explicitly states that ‘perfection’ refers to a continual striving toward an ideal, as he states that it is not possible to actually reach a final point or destination of some type (Kant 241). Therefore, we ought to orient our efforts toward the notion of betterment or personal growth, rather than actually achieving a state of perfection. As my partner puts it, “perfection necessarily includes the imperfections.”

Then by chance, if there is such a thing, some of Kant’s sentiments implicitly appeared in a book I finished recently about the work of Carl Jung by Mary Esther Harding. In the conclusion, she states “we should never forget that the world is made up of individuals, and that the one thing within our reach is our own development: it should not be neglected however much it may cost” (Harding 217). Personal growth is not easy, but it is the one aspect of our lives we have the most control over, despite how challenging it may feel in the moment. As such, we have a duty for striving toward a vague idea of perfection, all the while knowing that it is not meant to be achieved, which should come as a relief to many. One’s duty is to continuously try to do one’s best, and should that be insufficient or fail in some way, to reflect on it and accept it for its reality rather than feeling bad about it. According to Kant, this effort is what makes us more virtuous (Kant 242), and indeed, as one improves their skills in any domain, we are justified in having faith that our efforts do pay off eventually.

Although the word ‘virtuous’ is a quite rich and complex, or loaded, depending on one’s perspective, one way of thinking about it can be through the idea of a musician: Hilary Hahn is a virtuoso (virtuosa?) at the violin because she has this particular skill, but also because she “excels in musical technique or execution” (‘Definition of Virtuoso | dictionary.com’). Anyone who has trained in music or sports deeply understands that the only route toward improvement is practice, and as one continues to work, their abilities improve. Hilary will still make mistakes from time to time; she isn’t perfect but she understands that the only way to improve is to keep practicing until she can play Paganini or Sibelius as perfectly as possible on a given occasion. Never forget that the word ‘perfect’ is also a verb, as in “to perfect one’s skill”, and that because we will always be fallible and imperfect humans, are still vulnerable to making mistakes under certain conditions, like fatigue. Rather than worrying about “being perfect”, we ought to worry about striving toward betterment instead.

Maybe one poetic interpretation of the graph above is to view the x-axis as the number of mistakes made, while the y-axis represents one’s skill level: as the number of mistakes approaches zero, it can never actually be zero, and at the same time, one’s skill level only grows in value, approaching a never-ending concept like infinity, suggesting a boundlessness which is far more important, in my mind, than never making a mistake in the first place.

The moral of the story is that all the blood, sweat, and tears will pay off when one earnestly works toward one’s goals, provided acts of self-reflection about this progression are honest. If not, it will be difficult to determine just how to tailor one’s efforts in such a way which reduces certain mistakes or shortcomings. If one can accept that ‘perfection’ is not a final destination or state, but an activity, it seems as though just about anything is possible, albeit over an indefinite amount of time.

Works Cited

‘Definition of Asymptotic | Dictionary.com’. www.dictionary.com, https://www.dictionary.com/browse/asymptotic. Accessed 13 Oct. 2022.

‘Definition of Virtuoso | Dictionary.com’. www.dictionary.com, https://www.dictionary.com/browse/virtuoso. Accessed 13 Oct. 2022.

Harding, Mary Esther. The I and the Not-I: A Study In The Development of Consciousness. Princeton University Press, 1974.

Kant, Immanuel. The Metaphysics of Morals. Translated by Mary Gregor, Cambridge University Press, 1991.

Nu Metaphysics

Now that its semantic baggage has been disposed of, as suggested in Themes in Postmetaphysical Thinking by Jürgen Habermas, it’s time to rekindle our study of metaphysics. Going back to basics then, we can reconceptualize the word ‘metaphysics’ by thinking about what ‘meta’ actually means. A quick search on dictionary.com provides this definition: “pertaining to or noting an abstract, high-level analysis or commentary, especially one that consciously references something of its own type.” Given this, ‘metaphysics’ can be thought of as “the physics of physics” and since physics essentially just boils down to mathematics, can we not conclude that metaphysics is just more math? Furthermore, if physics aims to articulate patterns of cause-and-effect as observed in the natural world, ‘metaphysics’ then pertains to the field of study about the causal relations between these observed mathematical principles. All in all, rather than discussing entities, we ought to be discussing processes as they exist within and between physical systems.

Just as a quick note, however, I believe this idea originates in structural realism, specifically ontic structural realism (OSR), which suggests that the universe is made up of relations rather than entities like quarks and hydrogen atoms (Ladyman). The beauty of OSR is that the relata themselves exist as relations, albeit at a lower physical level. The energy produced by the Big Bang is what instigates the processes which gives rise to these structures, culminating into the reality we aim to measure in the sciences.

Now, I’m going to go out on a limb here, so bare with me. While Hegelian Dialectics aim to articulate an epistemic or cognitive process of comparing “opposing sides” or perspectives to uncover emergent products, in the form of ideas (Maybee), perhaps this notion can be extended to the physical world too. We know that as physical systems interact, the emergent phenomena is unlike anything present within the underlying components, as identified by Jaegwon Kim in Making Sense of Emergence (Kim 20–21). While Hegel appeals to a “thesis” and an “antithesis”, we can think of these as different systems interacting to produce novel effects. It is this process of combining, configuring, and rearranging elements within each “side” or system which can be considered metaphysical.

The idea of “magic” is just this: effects with obscure physical origins that are not immediately apparent to the observer. The example I appeal to is John Nash’s game theory which identifies how the cooperation between two individuals results in outcomes that are unlike those produced when agents operate separately. Nash identified a regularity within physical systems, namely humans, that produces an effect that is greater than the sum of its parts. Additionally, while game theory is theoretically subsumed by physics, insofar that it is a part of our physical world, the way it is articulated is through mathematics and procedures, rather than existing as an entity like an atom.

Although currently, there doesn’t seem to be much philosophical consensus on the metaphysical problem of the mind/consciousness, this issue can be resolved by naturalizing the works of Sartre and Merleau-Ponty. As biological creatures improved their sensorimotor capacities through [natural/sexual/etc.] selective processes, the brain evolved new ways of solving problems produced by aspects of the environment. By turning back to reflect on itself as an embodied agent, individuals become aware of their relative position in their environment and perhaps their life as an unfolding process. From phenomenal consciousness emerged access consciousness, and through similar reflexive processes, a wider “cosmic” consciousness will likewise spread throughout humanity. Once we realize what and where we are, we can understand how this relates to others, allowing individuals to see beyond their own needs and desires to act in the interest of others or the group. Through this cooperation, we all benefit by looking out for one another, just as game theory predicts. To do this, however, one must cultivate a self-awareness which facilitates the ability to speculate about other minds and the ways in which others may perceive the world.

Works Cited

Kim, Jaegwon. ‘Making Sense of Emergence’. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, vol. 95, no. 1/2, 1999, pp. 3–36.

Ladyman, James. ‘Structural Realism’. The Stanford Encyclopedia of Philosophy, edited by Edward N. Zalta, Winter 2020, Metaphysics Research Lab, Stanford University, 2020. Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/archives/win2020/entries/structural-realism/.

Maybee, Julie E. ‘Hegel’s Dialectics’. The Stanford Encyclopedia of Philosophy, edited by Edward N. Zalta, Winter 2020, Metaphysics Research Lab, Stanford University, 2020. Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/archives/win2020/entries/hegel-dialectics/.

Mary Continues to Learn

A while ago, I wrote a reply about Colorblind Mary given what we know about qualia today, but it’s such an interesting topic that I still think about it often. Lately, I’ve been doing a lot of reading about evolutionary biology and something that jumped to mind is that the sight of blood carries inherent meaning which is probably far more powerful than red fruit. It signals bodily damage which indicates a threat to the well-being of the individual, serving as an alert to attend to the source of the blood. As a result, the individual feels shock or fear due to this damage and it is this emotion which motivates behaviours aimed at preventing the injury from becoming more severe.

This leads us to an interesting point actually, as it indicates an amusing error in the thought experiment itself that could have been altogether avoided, but perhaps its existence indicates the realness of the confusion surrounding qualia back then. Mary will only have had a dozen or so years of black-and-white room living before her biological reality would have shown her what red means. Had Jackson entrapped a ‘Peter’ or ‘Paul’ instead, this self-pwn could have been avoided. Anyway, it’s an interesting reply to Jackson because it demonstrates why he is wrong about qualia and physicalism. Menstruating Mary would have either been alarmed or perhaps annoyed about the sight of her own “blood” depending on whether or not she understood what it signalled, what it means. Damage or injury? Shedding of the uterine lining? It depends on whether her education covered human reproduction, as it serves as the source of meaning in this instance of the colour red. If she doesn’t know what this red means, she’ll likely feel concerned and anxious, however, if she does, she’ll probably feel otherwise. If Mary is interested in having children, it signals a strong degree of unlikelihood that she is currently pregnant, perhaps resulting in feelings of disappointment from knowing what it means.

There is much more to be said about the various meanings of this example of red, but I’ll leave that for someone else to examine. Ultimately, for Mary to learn about what red means, she needs to study the human condition as examined by the arts and humanities, not the sciences. This does not indicate a problem exists within physicalism, as we can appeal to Claude Shannon’s conception of information as meanings embedded in structures (Shannon 379-80). Instead, the problem presented by Jackson’s thought experiment has to do with the way we understand ourselves as human beings, rather than our ability to scientifically explain subjective experiences.

Works Cited

Shannon, C. E. ‘A Mathematical Theory of Communication’. The Bell System Technical Journal, vol. 27, no. 3, July 1948, pp. 379–423. IEEE Xplore, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.

The blood of angry men
A world about to dawn
I feel my soul on fire
The colour of desire

Magic in Culture

Now is a good time to inject a little magic into every day life by examining and revelling in humanity’s vast history of cultural knowledge and practices. I encourage you to consider your capacity for creativity as a source of magic, where your ability to generate something more from something less is a special kind of wizardry. Moreover, our creations take on a life of their own as others are free to reference and expand upon these contributions. This is especially true today as the internet allows us to find like-minded individuals and communities which appreciate specific skills and the fruits of their labour.

In fact, it could be argued from an anthropological perspective, the internet is as magical as it gets. Although the term itself is used as a noun, the thing it references is more like a vague verb than a solid concept or object. We talk about a thing we don’t often think deeply about, especially due to its physical opacity and degree of technicality. Holding a hard-drive in your hand does not clarify this ambiguity and any resulting confusion, as there is nothing to suggest in these materials that an entire virtual world exists within. Without a screen and a means to display its contents, the information inside is rendered unknowable to the human mind. The amount of human knowledge, skill, and technological progress required to sustain life today is evidence of our power as creators, however, what seems to be missing is a sense of awe that ought to accompany the witnessing of supernatural events.

The causal powers of seemingly magical effects, like electricity for example, can more or less be explained or accounted for by applications of dynamics systems theory, as the interactions of environmental conditions over time is required for the emergence of new properties or products. These emergent products are generated by restructuring lower-level entities or conditions but are not reducible to them, nor are predictable from the lower level (Kim 20-21). Electricity is generated by transforming physical forces and materials into energy, emerging from the interaction of environmental variables like heat and air pressure for example. Alternatively, consider a simple loaf of bread as created by the interaction of flour, a leavening agent like yeast, time, and heat. The ingredients for the bread, like the flour, yeast, sugar, and salt, must be added in a specific order at a specific time in order for the final product to truly become ‘bread’.

Emergence can also be identified in game theory, as cooperation generates a non-zero sum outcome where individuals gain more by working together than if they were working alone (Curry 29). Human economies are founded on this principle of cooperation, as trading goods and services with others theoretically improves the lives individuals working to honour the agreement. From this perspective, it turns out that bronies have identified a fundamental principle of life: friendship is magick because cooperation generates something more from something less. Just as individuals are free to expand upon or reshape the ideas and contributions of others, and groups of individuals are able to combine their expertise to build something new altogether, like the internet. Not only can we establish conceptual connections between past, present, and future, we can connect with each other to expand our understanding of some portion of human culture.

Works Cited

Curry, Oliver Scott. ‘Morality as Cooperation: A Problem-Centred Approach’. The Evolution of Morality, Springer, 2016, pp. 27–51.

Kim, Jaegwon. ‘Making Sense of Emergence’. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, vol. 95, no. 1/2, 1999, pp. 3–36.

Implicit Argument for Qualia

Steven Harnad provides an embodied version of the Turing Test (TT) in Other Bodies, Other Minds by using a robot instead of a computer, calling it the Total Turing Test (TTT). He states that to be truly indistinguishable from a human, artificial minds will require the ability to express embodied behaviours in addition to linguistic capacities (Harnad 44). While the TT implicitly assumes language exists independently from the rest of human behaviour (Harnad 45), the TTT avoids problems arising from this assumption by including a behavioural component to the test (Harnad 46). This is due to our tendency to infer other humans have minds despite the fact individuals do not have direct evidence for this belief (Harnad 45). This assumption can be extended to robots as well, where embodied artificial agents which act sufficiently human will be treated as if it had a mind (Harnad 46). Robots which pass the TTT can be said to understand symbols because these symbols have been grounded in non-symbolic structures or bottom-up sensory projections (Harnad 50–51). Therefore, embodiment seems to be necessary for social agents as they will require an understanding of the world and its contents to appear humanlike.

These sensory projections are also known as percepts or qualia (Haikonen 225), and are therefore required for learning language. While Harnad’s intention may have been to avoid discussing metaphysical properties of the mind, for the sake of discussing the TTT, his argument ends up providing support for the ontological structures involved in phenomenal consciousness. Although I didn’t mention it above, he uses this argument to refute Searle’s concerns about the Chinese Room, and the reason he is successful is due to the fact he is identifying an ontological necessity. Robots which pass the TTT will have their own minds because the behaviours which persuade people to believe this is the case are founded on the same processes that produce this capacity in humans.

Works Cited

Haikonen, Pentti O. ‘Qualia and Conscious Machines’. International Journal of Machine Consciousness, Apr. 2012. world, www.worldscientific.com, https://doi.org/10.1142/S1793843009000207.

Harnad, Stevan. ‘Other Bodies, Other Minds: A Machine Incarnation of an Old Philosophical Problem’. Minds and Machines, vol. 1, no. 1, 1991, pp. 43–54.